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Preface  

Although stellar dynamics is a well established discipline with quite a long 
history behind it, the topic of the meeting we chose to hold in March 1993 
in Geneva could have met with some surprise a few decades ago. During 
recent years radical changes have occurred in many areas of scientific re- 
search, changes following from the realization of the underlying universality 
of the concepts of chaos, randomness and unpredictability. The determinism 
of Laplace which once dominated physical sciences has been replaced by the 
image of Arnold's cat. At the same time spectacular advances in the theory 
of dynamical systems have provided rigorous tools to study those complex 
phenomena. This has gone hand in hand with the increased observational 
accuracy of stellar systems, which offers the opportunity to put serious em- 
pirical constraints on the theory. The idea of bringing together specialists 
covering these topics is initially attractive because of the possibility of ob- 
taining the mutually useful information first hand. However, there was also 
an element of danger: that  of having monologues instead of dialogues. But we 
were encouraged by the previous experience of meetings on stellar dynamics 
held in 1966, 1967 (Besan~on, Paris). Turning now the pages of those pro- 
ceedings, after more than a quarter of century, one cannot avoid the feeling 
of respect for the participants, how correctly they anticipated the forthcom- 
ing problems to be solved, guessed their possible answers.. .  And if that  was 
the time of the amazing discoveries of Hdnon ~z Heiles, Lorenz and other 
pioneers, today we have the same feeling when we find regular behaviour of 
complex systems. This was the logical and historical origin of the idea of our 
Workshop. 

The volume we are now presenting contains the talks given at the Work- 
shop, with the emphasis on their review character, aiming to provide a refer- 
ence book useful for as many specialists as possible from the different areas. 
It concerns first of all, the representation of tools of ergodic theory: along 
with the results of latest observations it contains sophisticated mathematical  
techniques usually not found in books on stellar dynamics. This is perhaps 
the first distinguishing feature of this volume. To maintain the emphasis on 
review, we therefore unfortunately had to omit the interesting discussions 
following almost all of the talks. However, we do present the discussion held 
at the last session of the Workshop concerning 10 essential unsolved problems 
of stellar dynamics: in theory, computer simulations and observations. This 
can be considered as another non-traditional aspect of the book. 

Finally, let us mention that,  to fulfil the conditions imposed by our aims, 
in accord with the Scientific Organizing Committee, all the submitted papers 
were refereed, almost all were revised and a few rejected, a fact again not 
usual for conference proceedings. Only the texts of discussion talks have been 
kept untouched. As a result we have a collection of papers of an even better 



VIII 

quality than those submitted originally. This experience may indicate to the 
editors and publishers that the refereeing of certain conference proceedings 
is not only desirable but can even be more important than for journals, if the 
former are intended to serve longer and for a wider audience. 

Let time judge this further attempt at deciphering the truth about the 
world of stellar systems, for us associated perhaps with the face of another 
mysterious cat, the Cheshire cat of Alice in Wonderland. 

We are grateful to all those who helped us in the organizing of the work- 
shop. In particular our thanks go to the Director of Geneva Observatory, 
Professor Andrd Maeder, tl~e members of the Local Organizing Committee, 
Professor Louis Martinet and Dr. Daniel Friedli, and the secretaries, Ms. Irene 
Scheffre and Ms. Elisabeth Teichmann. We would also like to mention the help 
of Dr. Armen Kocharyan and the anonymous referees in the preparation of 
this volume. 

We acknowledge the financial supports of the Swiss Academy of Natural 
Sciences (ASSN), the Swiss National Science Foundation (FNRS), and the 
University of Geneva. They have been decisive in enabling this conference to 
take place. 

Finally, it is a particular pleasure to record the fact that the daughter 
of one of us, Karin Pfenniger, had the good taste to delay her birth, first 
announced for the beginning of the workshop, by four weeks. 

Geneva 
October 1993 

Vahe Gurzadyan 
Daniel Pfenniger 
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Foreword  

Future historians of astronomy will certainly recognize as a major step in 
our field, the progress enabling us to precisely reconstruct the astrophysical 
objects by numericM simulations on computers. This provides an iterative 
process, with a mutual feedback between theory and observations. This is 
an essential procedure in the progress of understanding the deep physics and 
evolution of planets, stars, galaxies and the Universe. The present Workshop 
on "Ergodic Concepts in Stellar Dynamics" organized by V.G. Gurdzadyan 
and D. Pfenniger is a very valuable contribution to this procedure of under- 
standing star clusters and galaxies. 

Stellar dynamics is basically governed by a simple law: Newton's law of 
gravitation. It is thus amazing, at least for the nonspecialist, how differ- 
ent physical phenomena may arise in this context: from Keplerian orbits to 
chaotic motion, instabilities and gravothermM collapse. The basic law is sim- 
ple, but the consequences are incredibly rich, as usual in Nature. 

The unavoidable counterpart of this natural complexity, which gives some 
additional fiavour to the life of astrophysicists, is that. the handling of the 
problems requires special mathematical and numerical tools, as well as ex- 
treme care and astuteness in the work and interpretation. A major concern 
of this workshop and of the associated volume is to present the leading con- 
tributions in this field with a well balanced distribution between the various 
aspects of the problem: basic observations, mathematical methods, numerical 
tools, instabilities both physical and numerical, systems with large numbers 
of bodies. To provide the icing on the cake there is also a nice final discussion. 

Geneva Observatory was founded in 1772. It has a long tradition of quality 
in astronomy, with very active groups in various fields, such as stellar dynam- 
ics and kinematics, dynamics and evolution of galaxies, stellar physics and 
evolution, stellar photometry, high energy astrophysics and active galactic 
nuclei. This workshop is a highlight among these activities and I may express 
the deep gratitude of Geneva Observatory and of the scientists working in 
this field to V.G. Gurzadyan and D. Pfenniger for having taken the initiative 
in organizing this meeting and for having conducted it to a well-deserved 
s u c c e s s .  

Andr~ Maeder 

Director of Geneva Observatory 



1. Observations 





Structura l  and D y n a m i c a l  Forms of  Ell iptical  
and D w a r f  Galaxies  

S. DJORGOVSKI 
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Abs t rac t .  This review discusses two intriguing problems posed by obser- 
vations of early-type galaxies: First, the existence of a so-called fundamental 
plane of elliptical galaxies and its thickness impose strong constraints on their 
global dynamical structures, stellar populations, and the relation of dark to 
visible matter in them. Second, the prevalence of extreme core-halo structures 
among the nucleated dwarf galaxies. Finally, some general remarks are made 
about the standard density forms of galactic subsystems, including dark ha- 
los. These empirical findings provide strong constraints and valuable clues for 
models of galaxy formation. They may point towards the existence of pre- 
ferred dynamical structures in galaxies, perhaps globally stable or maximum 
entropy states, reached through different formative histories. 

1. Introduction: Galaxy Families and Galaxy Manifolds 

Understanding of galaxies, their structure and physics is inseparable from the 
understanding of their formation and evolution. Silk &: Wyse (1993) give a 
good recent review of this subject, in its many aspects. While searches for 
young galaxies at large redshifts aim to probe directly their early evolutionary 
phases, as far as the formation of normal galaxies is concerned, such studies 
have met with only a limited success so far, due to the inherent difficulties in 
observations of faint objects; for a recent review, cf. Djorgovski (1992c), and 
references therein. 

An alternative path is in systematic studies of relatively nearby galax- 
ies, which offer a richer signal and can be studied in much more detail. In 
addition to the understanding of galaxies themselves, such studies can pro- 
vide interesting problems and insights for the dynamics of stellar systems. 
As global systematics of galaxian properties begin to emerge, one can try to 
make inferences about the possible formative mechanisms and evolutionary 
paths which could have produced the observed phenomenology of galaxies 
today. There has been a substantial progress in this area over the past few 
years. 
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Traditionally, systematic studies of galaxy properties tended to be within 
a loose framework which may be called the Hubble sequence paradigm. This 
framework has served us well, but its inadequacies are increasingly becom- 
ing apparent. Vast amounts of new, quantitative information neither fit easily 
into the old morphological bins nor can be explained within such purely qual- 
itative, empirical schemes. For example, the Hubble sequence fails completely 
in describing the properties of elliptical galaxies and correlations among them; 
the fundamental dichotomy between dwarf and normal (giant) galaxies has 
been completely missed until a decade ago; and so on. Galaxy families should 
be defined quantitatively, by the portions of the parameter space they occupy 
and the correlations they obey, rather by the superficialities of visible light 
morphology. 

A new operational framework is needed for the modern, quantitative, sys- 
tematic studies of galaxy properties, their physics and evolution; perhaps a 
galaxian equivalent to the Hertzsprung-Russel diagram as a tool for stud- 
ies of the physics and evolution of stars. A schematic concept of such a 
framework, called galaxy parameter space, has been proposed by Djorgov- 
ski (1992a, 1992b). 

Both ellipticals and spirals (using the word "spirals" as a shorthand for 
galaxies with gaseous, star-forming disks, regardless of the density wave pat- 
tern therein) form statistically two-dimensional sequences or manifolds in the 
parameter spaces of many of their observed global properties. In other words, 
a multitude of independent global physical properties which can be defined 
and measured, such as the luminosity, characteristic radius, mass, various 
forms of density, characteristic velocity scales, colors and other stellar popu- 
lation variables, etc., can be fully described to within the measurement errors 
by only two numbers. For elliptical galaxies, this manifold has been named 
the Fundamental Plane (hereafter FP), and is described in the following sec- 
tion. For spirals, where different observables are used, there is a so-called 
Scale-Form plane (Whitmore 1984); the Thlly-Fisher relation represents a 
nearly edge-on view of this manifold. For both galaxy families, many global 
properties are connected by sets of excellent bivariate correlations. These cor- 
relations must be products of galaxy formation and evolution, and as such 
represent precisely the empiricM clues for understanding of galaxies we have 
been looking for. 

Pursuing the analogy with the H-R diagram, just as stars form one- 
dimensional sequences of mass embedded in a parameter space of luminosity 
and temperature, galaxies form two-dimensional sequences embedded in a 
parameter space of a "size" (mass, luminosity, or radius), density (or surface 
brightness), and kinetic temperature (e.g., velocity dispersion for pressure- 
supported systems, or rotational speed for disks). The FP is an analog of the 
"mMn sequence" for ellipticals. Just like stars follow evolutionary tracks in 
the H-R diagram, galaxies evolve through their parameter space in the ways 
which yet remain to be fully understood. 
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Given the complex nature and structure of galaxies, it is quite remarkable 
that  the statistical dimensionality of these manifolds is only two. Why this 
might be in the case of elliptical galaxies is discussed below. In the case 
of spirals, the implication is that  the star formation history of the disks is 
somehow tightly regulated by the properties of their dark halos. In either case, 
this reduction of dimensionality in galaxy manifolds implies that  there are 
strong global regularities in both equilibrium density structures and dynamics 
of galaxies: Hamiltonian (dissipationless) systems cannot "forget" dynamical 
information. One cannot help but feel the invisible hand of entropy at work, 
setting up the basic properties of galaxies as we know them. 

2. T h e  F u n d a m e n t a l  P lane  o f  Elliptical Galaxies  and 
its Impl icat ions  

A number of the observable and derived physical properties of elliptical galax- 
ies, including luminosities, masses, all consistently defined measures of radius 
(core, half-light, isophotal, etc.), projected velocity dispersions, all consis- 
tently defined measures of surface brightness or density, colors, and measures 
of metallicity (line strengths), are connected in a statistically two-dimensional 
manifold, the so-called Fundamental Plane (FP), by a set of bivariate scal- 
ing laws; i.e., the correlations are linear when the logarithmic quantities are 
used. However, a number of other quantities, generally describing the az- 
imuthal and radial shapes and distribution of the luminous material (e.g., 
ellipticity, measures of triaxiality, etc.), the velocity anisotropy, or the stel- 
lar population gradients, do not participate in the FP, and do not correlate 
well with any other property. The subject is reviewed, e.g., by Djorgovski 
(1987, 1992a, 1992b), Kormendy & Djorgovski (1989), Djorgovski & de Car- 
valho (1990), Bender et al. (1993), Capaccioli et al. (1993), or Djorgovski & 
Santiago (1993), and references therein. 

Simple or minimal representations of the FP can be made in three- 
dimensional spaces of observable or derived quantities. If logarithmic quan- 
tities are used, the data  points sit on a plane, which is generally tilted with 
respect to all observable axes. The coordinate axes given by the data  them- 
selves, i.e., the eigenvectors of the data  distribution, are not simply related 
to any observable or derived quantities, although the principal eigenvector is 
close to the galaxy mass axis (Djorgovski 1992b). The coordinate system can 
be rotated or tilted to suit a given purpose. One particular possibility among 
the infinitely many was proposed, e.g., by Bender et al. (1992), who renamed 
the mass to gx, and mass-to-light ratio (M/L) to t¢3. However, their {~l; n2} 
plane is tilted with respect to the FP, i.e., t¢3 ~ const., so the advantages 
of this particular choice of a coordinate system are not clear. It is perhaps 
cleaner to stick with the directly observable quantities. 
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Fig. 1. Parameters of elliptical galaxies, from a survey described by Penereiro et 
al. (1993). The left panel shows a plot of the projected central velocity dispersion 
a, measured in km/s, versus the mean surface brightness within the effective (half- 
light) radius isophote (#)~, measured in red magnitudes per arcsec 2. This is an 
observer's equivalent of the cooling diagram from theories of galaxy formation. 
It represents a view of the FP nearly face-on: the observed scatter far exceeds 
the measurement errors. The right panel shows a bivariate correlation between a 
combination of velocity dispersion and surface brightness, and the effective radius 
Re, measured in parsecs. This is a view of the FP edge-on: the residual scatter is 
fully accounted by the measurement errors. The two views illustrate the statistical 
two-dimensionality of the manifold of elliptical galaxies. 

A c o m m o n  practice is to consider the parameter  space whose axes include 
a measure of  radius or semimajor  axis, R, such as the de Vaucouleurs '  effective 
radius (but  other  possibilities would do as well), projected central velocity 
dispersion, o, and  the mean  surface brightness within tha t  radius or the 
corresponding elliptical isophote (using nota t ion  I for the projected surface 
brightness in linear units, such as the solar luminosities per unit area, or # for 
the corresponding logar i thmic  quant i ty  in magni tudes  per square arcsec 1). In 
this nota t ion,  the c o m m o n  expression of  the FP  is a bivariate scaling relation: 

I~  ,'~ o "A I B , (1) 

where the typical  observed values of  the coefficients are A ~ 1.4 and 
B _ - 0 . 8 5 ,  with uncertaint ies of the order of  10%. There are also com- 
parable  variat ions between different da t a  samples, and dependences on the 
pho tomet r ic  bandpass  and  the large-scale environment  (de Carvalho ~ Djor- 
g0vski 1992a; Djorgovski &~ Sant iago 1993). Figure 1 shows a real-life example 
f rom the da t a  set on ellipticals described by Penereiro et al. (1993). 

1 The rational reader is rightly offended by such astronomical arcana, but alas, 
these units are commonly used and are hard to avoid. 
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A heuristic derivation of the FP was presented by Djorgovski et al. (1988). 
Basically, for a family of objects bound by Newton(an gravity (or any r -2 
force), the virial theorem (hereafter VT) produces the following scaling rela- 
tion: 

(R) ..~ (V 2) ( I ) - I ( M / L )  -1 , (2) 

where (R) is the mean mass radius, (V 2) is the mean kinetic energy per unit 
mass, i.e., a velocity scale, (I) is the mean surface brightness, defined so that  
the luminosity is proportional to (I)(R) 2, and ( M / L )  is the mass-to-light 
ratio. These quantities may be related to the observed ones by some arbitrary 
functions. The simplest case is that  the corresponding quantities are roughly 
proportional, e.g., (R) = k , R ,  (V  ~) = kyo  "~, (I) = kiI ,  etc., where the 
proportionality coefficients themselves may be functions of other parameters, 
e.g., the total mass, velocity anisotropy, and so on. These coefficients reflect 
the dynamical and density structure of the galaxies. These proportional(ties 
could also be, in principle, intrinsically very noisy. 

The VT connects three global parameters by a single equation. Thus, it 
represents an equation of a plane in a parameter space of any three quantities 
connected by it, such as the mass M, radius (R), velocity scale, or various 
forms of volume density or projected (surface) density. If galaxies also sit on 
a plane in the parameter space of the observed quantities, then the following 
condition must apply: 

kv  t kI kR (15I/L) ..~ c~ A-2 I - B - 1  . (3) 

Note that  the various k's need not be constants, but functions of any number 
of galaxian properties, reflecting their internal dynamics, projection effects, 
etc. The ( M / L )  ratios depend on the ratio of visible to dark matter in galax- 
ies, and their spatial distribution (mainly, the relative amounts of the dark 
mat ter  within the visible portions of galaxies); they also reflect the stellar 
populations of galaxies, through the relative numbers of low-mass dwarfs, 
white dwarfs, or dark stellar remnants, which contribute little light, but could 
lock up substantial portion of the baryonic mass. 

The mapping of the VT plane into the observed FP, illustrated schemat- 
ically in Fig. 2, requires that  the nontrivial condition given by Eq. (3) is 
satisfied, and thus reflects some deep regularities in the composition and dy- 
namics of elliptical galaxies. First, the small observed thickness of the FP 
implies that  there can be little or no intrinsic scatter in Eq. (3): either all k's 
and ( M / L ) ' s  are constants or weak functions of the FP variables with little 
or no scatter in each of them, or their scatter has to be strongly correlated 
and mutually compensated. Neither possibility is easy to arrange. Second, 
the observed values of the FP slope coefficients are A # 2, and B # -1 ,  and 
thus something has to be changing systematically within the FP, in just the 
right amount to produce the observed values of these coefficients, and yet not 
introduce a scatter which would thicken the FP at any given location. Both 
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Fig. 2. A schematic illustration of the problem posed by the FP; all axes are as- 
sumed to represent logarithms of the indicated quantities. Galaxies are in general 
guaranteed to sit on a plane defined by the virial theorem (VT), in the parameter 
space of their mass M, mean density p, and mean kinetic temperature (or a char- 
actetistic velocity squared) TK. In the parameter space of observable quantities, 
such as the luminosity L or a radius R, surface brightness #, and projected veloc- 
ity dispersion a, elliptical galaxies form a two-dimensional sequence, the FP. The 
observed thickness of the FP is comparable to the measurement errors, although 
there might be some intrinsic thickening as well. The mapping of the VT plane into 
the observed FP requires that non-trivial constraints about homology of density 
and dynamical structures of ellipticals, and their mass-to-light ratios are satisfied 

of these implications of the FP thus impose strong constraints on formation 
and dynamics of ellipticM galaxies. 

There are two basic approaches to the problem: through dynamics (ki~, 
kv, kl), and through (M/L) ratios; of course, they are not mutual ly  exclusive. 
I f  the observed tilt of the FP with respect to the pure-VT values A = 2 and 
B = - 1  is b lamed entirely on the (M/L) ratios, the implied scaling law is 
(M/L) ~ M e`, where a is typically ~ 0 . 2 -  0.4, depending on the sample, 
bandpass,  etc. (Faber et M. 1987; Djorgovski 1988; Djorgovski & Santiago 
1993). 

I t  is generally believed tha t  most  of the mass within the visible parts of 
ellipticals is baryonic. Furthermore, measures of the average stellar metallic- 
ity are also contained in the FP (Djorgovski 1987; de Carvalho & Djorgovski 
1989). It  is thus tempt ing to ascribe the variations in the (M/L) to differences 
in the initial mass function of stars (Djorgovski 1988). Renzini & Ciotti (1993) 
have explored this possibility in some detail, and concluded that  a consider- 
able fine-tuning would be needed in order to reproduce both the tilt of the 
FP, and the smM1 scatter around it. It  seems more likely that  the (M/L) of 
stellar populations (i.e., excluding the dark matter) ,  and thus the initial mass 
functions of stars are universal and constant for most  (old) elliptieals. This 
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is in itself a non-trivial cosmological observation which should be explained, 
and it also leaves us with the FP problem. 

A variation of the dark to luminous mat ter  ratio, or in their relative dis- 
tributions could be invoked, in the sense that more luminous or more massive 
galaxies have fewer baryons and/or  fewer stars produced per unit mass. As 
there is no believable and complete theory of dissipative galaxy formation 
yet, little can be said about this possibility. Reproducing the observed scal- 
ing of the apparent (M/L) with mass would be a good test for the models 
of galaxy formation. It is intriguing that  such a relation was indeed found 
by Navarro (1993), but obviously the case is not closed yet. Even if there is 
such a scaling relation, the scatter should still be relatively small, implying 
a remarkable constancy in the ratio of dark to luminous mass at any given 
point in the FP, or even globally, for the entire family of ellipticals. 

Regardless of whether the variation in (M/L)'s could explain the tilt of 
the FP, we are still left with a near constancy of the structural coefficients 
kR, kv, and ki. If all elliptical galaxies had exactly the same density struc- 
ture, and exactly the same dynamics, these coefficients would be constant. 
However, we know that ellipticals show a very considerable diversity of stellar 
kinematics, and a variety of shapes and density profiles. In addition to the 
frequent occurrence of "peculiar" kinematics, such as the counter-rotating 
cores, minor axis rotation, etc., ellipticals show a broad range of velocity 
anisotropy or the relative importance of the rotational to pressure support, 
as parametrized, e.g., by the ratio of the maximum rotational speed to the 
projected velocity dispersion (Vm/a)* (Davies et al. 1983; see Kormendy & 
Djorgovski 1989, or de Zeeuw & Franx 1991 for reviews). Busarello et al. 
(1992) find no correlation between the rotational and random components 
of the total kinetic energy. Furthermore, none of the observed measures of 
velocity anisotropy, or of the radial or azimuthal shapes of light distribution 
correlate with any of the FP variables, and all of them show a considerable 
scatter. Even if one divides the samples of ellipticals by the median (V,,/~r)*, 
ellipticity, or the boxiness/diskiness parameter  a4, which is another measure 
of velocity anisotropy, one obtains the FP solutions only marginally different 
(Djorgovski & Santiago 1993). 

Therein lies the paradox: how is it possible to have such a great observed 
diversity of shapes and kinematics, yet have the the structural and dynamical 
properties coupled so rigidly so that  there is essentially no intrinsic scatter 
at any point within the FP? If one accounts for the measurement errors, 
the thickness of the FP in the velocity dispersion direction corresponds to 
the scatter of at most a few percent in kv (Djorgovski & Santiago 1993). It 
would be very easy to generate a scatter much larger (of the order of 100%!) 
by relatively modest amounts of velocity anisotropy (Tonry 1983; Merritt 
1988). Why are ellipticals so well standardized? 

While the observed surface brightness (and thus density) profiles of ellip- 
ticals do show some variety, they are broadly similar, following the general 
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Hubble - de Vaucouleurs shape: they can be reasonably well described either 
by a slightly curved power-law profile with a slope ~ - 2  and a core, or as the 
r 1/4 profile with some deviations (cf. Kormendy 1982; Djorgovski 1985; Ca- 
paccioli 1988; Kormendy ~c Djorgovski 1989, and references therein). There 
is a weak and noisy trend in that  more luminous ellipticals tend to have shal- 
lower profiles (Sehombert 1987), but there is a variety of profile shapes at 
every luminosity. Nevertheless, the general similarity of profiles does suggest 
that  kR may be close to being a constant, or only a weak function of the 
galaxy mass. 

There is some incipient understanding as to why elliptieals have such den- 
sity distributions. Objects with density profiles with that  general shape are 
readily produced in numerical simulations of cold collapse (van Albada 1982; 
Villumsen 1984; McGlynn 1984; Aguilar 1988; Aguilar & Merritt 1990; and 
many others). Adding dissipation does not seem to change the basic outcome 
(Carlberg et al. 1986); this is important,  since the formation of ellipticals 
must have involved a considerable degree of dissipation (eft Kormendy & 
Djorgovski 1989 for detailed arguments). The relative kinetic temperature, 
collapse factor, presence or absence of a secondary infall, preexistence and 
the radial density distribution of a dark halo, and the relative amount of 
a net rotation all play some role in determining the details of the result- 
ing structure. Variation in such parameters could easily explain the observed 
diversity of profile shapes. However, these are just simulations, and do not 
answer the basic question: why is there a standard product, a density profile 
of the Hubble - de Vaucouleurs type? 

The answer almost certainly has to involve maximization of entropy in 
some form, achieved through violent relaxation (Lynden-Bell 1967), or some 
other type of collective relaxation process (e.g., Gurzadyan & Savvidy 1986; 
or Pfenniger 1986). Functional forms of the phase space density distributions 
which both seem to reproduce the observed density profiles of ellipticals, and 
maximize some entropy-like functional, have been proposed by Binney (1982), 
nertin & Stiavelli (1984), Stiavelli & Bertin (1985, 1987), Tremaine (1987), 
Maoz & Bekenstein (1990), Ciotti (1991), Spergel ~: Hernquist (1992), and 
others; for recent reviews, see Binney (1988), or Bertin & Stiavelli (1993). 
Still, physical circumstances which would lead to a "natural selection" of a 
particular distribution remain poorly understood. It is possible that violent 
relaxation or some similar process was at work, since formation of elliptic&Is 
probably involved a good deal of merging, regardless of the amount of dissi- 
pation involved; dissipation in general also tends to erase information. This 
is an outstanding challenge for the theory. 

The uniformity of (M/L)  ratios and density distributions is not enough to 
guarantee the existence of a thin FP; uniformity of their dynamical structures 
is also required, as demonstrated by the strong observational constraints on 
kv. One way to express this is that given the observed values of the galaxy's 
radius and mean surface brightness (both defined in some consistent manner, 
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but still with a considerable algorithmic latitude), the observed projected 
velocity dispersion can be predicted to within the measurement errors! This 
is true almost regardless of the value of the velocity anisotropy parameters 
such as (Vm/o')*, and the details of kinematics; the projection effects also 
seem to be neatly compensated. This robustness is truly remarkable: it im- 
plies a very narrow range of the net velocity anisotropy at any given location 
in the FP. In other words, elliptical galaxies apparently occupy only a small 
subset of dynamical or orbital structures which are allowed to them. A spon- 
taneous self-selection of a restricted range of orbital structures has been seen 
in numerical simulations by Aguilar & Vel~zquez (1993). 

Franx et al. (1991) found that ellipticals show a limited range of mis- 
alignment angles between their rotational axes and projected minor axes. If 
most ellipticals are triaxial, and the distribution of their angular momenta 
was uniform, a much broader distribution of kinematical misalignment angles 
would be expected. This again points towards a restricted set of dynamical 
structures. 

The observed small thickness of the FP requires that ellipticals follow a 
narrowly defined range of dynamical and density structures. The similarity 
of their density profiles follows directly from simple surface photometry. The 
similarity of dynamical structures is far less obvious in the direct kinematical 
data, but it is strongly implied by the small thickness of the FP. Whereas 
there have been some at tempts  to explain the radial density structure of 
ellipticals, the uniformity of their dynamical structures comes as a surprise, 
and is almost completely unexplored. Whatever physical processes select the 
preferred density profiles, probably select a correspondingly narrow range of 
dynamical structures. Understanding of this natural selection is the principal 
theoretical puzzle posed by the FP. 

Unfortunately, gravothermodynamical entropy is an elusive concept. For 
an unconfined self-gravitating system, there is no maximum entropy state 
(Tremaine et al. 1986). The entropy increases as a core-halo structure is es- 
tablished, with a compact core which contains a small fraction of the total 
mass, but has most of the total binding energy, and an extended, but loosely 
bound halo containing most of the mass. White & Narayan (1987) obtained 
just  such solutions for isolated, self-gravitating systems of a finite mass and 
energy. Imposing a maximum phase space density limit simply limits the rela- 
tive size of the compact core, but the basic core-halo structure remains. Only 
if an additional restriction was imposed that the profile should be a power- 
law, a Hubble-like profile shape was recovered. White &5 Narayan concluded 
that  some additional, as yet unknown physical constraints must be operating 
during the formation of ellipticals (or, for that  matter,  in numerical simula- 
tions), in order to reproduce the observed density profiles. 
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3. E x t r e m e  C o r e - H a l o  S t r u c t u r e s  in D w a r f  Galax ies  

As it happens, the core-halo structures do occur in vast numbers of galax- 
ies, namely the low surface brightness dwarfs (LSBD). The core-halo con- 
trasts can be rather extreme, and the apparent similarity with the maximum- 
entropy solutions is enticing. What are these objects and how did they achieve 
such states? 

LSBD are the most numerous galaxies known in the local universe, even 
if they do not contribute most of the total light (Sandage et al. 1985). His- 
torically they have been confused as "dwarf ellipticals'. They certainly have 
nothing to do with the true ellipticals, as their properties and correlations 
between them are vastly different (Wirth & Gallagher 1984; Kormendy 1985; 
Kormendy & Djorgovski 1989; de Carvalho & Djorgovski 1992b; Djorgovski 
1993, and references therein). Not all of them are nucleated, but that may be 
only a detection threshold effect: the nuclei are unresolved or barely resolved 
even in the best ground-based observations. Many are, and the frequency of 
occurrence and the fraction of light contained in the compact nucleus both 
tend to increase with the increasing luminosity of the host galaxy; typically, 
the nucleus contains a few percent of the total galaxy light. The most ex- 
tensive study of their photometric properties to date is that by Binggeli & 
Cameron (1991). 

The nearest case to us is NGC 205, a dwarf companion of the Andromeda 
galaxy, M31. Unfortunately, it is a relatively unimpressive case of a compact 
nucleus, relative to the typical cases studied in the Virgo and Fornax clus- 
ters and elsewhere by Binggeli and his collaborators, and others. Its surface 
brightness profile is shown in Fig. 3, along with an example of a normal ellip- 
tical of a comparable luminosity, at a comparable distance. The logarithmic 
representation is really hiding the contrast, and a linear intensity cut through 
NGC 205 is shown in Fig. 4. Even the deconvolved version of the ground- 
based data underestimates the true contrast, as shown by the Hubble Space 
Telescope observations (I.R. King, priv. comm.). 

The dynamics of NGC 205 has been measured by Held et al. (1990) and by 
Carter & Sadler (1990). Both studies indicate that the nucleus is colder than 
the surrounding galaxy, with the projected velocity dispersions CtNU C " ~  20 
km/s, and O ' G A  L "~ 60 km/s. 

Both groups conclude that NGC 205 and presumably other LSB dwarfs 
are most likely supported by velocity anisotropy, rather than by rotation 
(cf. also Bender et al. 1991). 

The derived properties of the nucleus and the galaxy from the seeing- 
deconvolved ground-based observations (Bendinelli et al. , in prep.) are listed 
in Table 1. The contrast between the nucleus and the galaxy is rather striking: 
the nucleus is at least 4 orders of magnitude denser than the surrounding 
galaxy, and it is thus clearly a dynamically independent system. We should 
also bear in mind that this is a relatively puny example of a compact nucleus, 
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Fig. 3. Surface brightness profiles o f  a normal or "classical" elliptical galaxy M32 
= NGC 221 (left), and a nucleated low surface brightness dwarf galaxy, NGC 205 
(right), plotted on the same scale. The data were taken from a uniform survey by 
Djorgovski (1985). The two objects have comparable luminosities and distances, 
and illustrate the contrast between the true ellipticals and dwarf galaxy families. 
The nucleus of NGC 205 is barely resolved, and its prominence is clearly limited 
by the seeing. Logarithmic representation hides the real contrast, as illustrated in 
Fig. 4 

T a b l e  1. Physical parameters of the NGC 205 nucleus and its host galaxy 

Nucleus (deconvolved) Galaxy 

Core radius < 0.3"~ 1.0 pc 25"___ 87 pc 
Half-fight radius ~ 0.4"_ 1.4 pc 100"~ 350 pc 
Luminosity 5.5 x 10 ~ L® 3.7 x 10 a L® 
Central luminosity density ~ 3.6 x 10 4 L®/pc a 4.6 L®/pc a 
Average luminosity density ~ 1.6 × 10 4 L®/pc a 0 .7Lo/pc  a 
Central relaxation time ~ 8 × 107 yr 1012 yr 
Mass-to-fight ratio 0.9 Mo/Lo,v 17 Mo/L®,v 

and that  these data are still limited by the seeing; for most nucleated dwarfs, 
the contrasts are probably even stronger. 

The origin of these systems is still unknown. Both photometry and spec- 
troscopy indicate that  the nuclei are perhaps slightly younger than their host 
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Fig. 4. Linear intensity cuts through the center of NGC 205 illustrate the dramatic 
core-halo nature of its surface brightness distribution. The lower panel shows a 
zoomed-in section of the cut, both before and after the partial seeing deconvohtion 
(Djorgovski et al. 1992; Bendinelli et al., in preparation). This deconvolved profile 
is still seeing-bruited; unpubhshed HST images by Ivan King (priv. comm.) show 
an even higher intensity contrast. It should be kept in mind that NGC 205 nucleus 
is a relatively inconspicuous rcpresentative of the class! 

galaxies (Vigroux et al. 1984; Bothun & Mould 1988; Vader et al. 1988; etc.). 
They could have formed from delayed bursts of star formation, perhaps from 
the gas released by the normal stellar evolution, or accreted from the out- 
side, and accumulated at galaxy centers. Nuclei may also represent piles of 
debris of globular clusters and/or remnants of off-nuclear star forming regions 
which spiraled in due to dynamical friction, as in the models by Tremaine 
(1976). Whatever their exact formation mechanism might be, they repre- 
sent fascinating dynamical systems, the closest realizations of unrestricted 
maximum-entropy states we know of in the world of galaxies. 



Structural and Dynamical Forms of Elliptical and Dwarf Galaxies 17 

4. Concluding Remarks: The Standard Forms of  
Galactic Subsystems,  and Their Origins 

With the hindsight of the knowledge gained over the past half-century, we can 
generalize the concept of stellar populations introduced by Baade to some- 
thing more encompassing. Galaxies appear to consist of subsystems, where 
stars may be the most easily visible, but not necessarily the dominant com- 
ponent. These subsystems are characterized by their density distributions, 
dynamics, composition (stars, gas, dark matter) ,  physical parameters of the 
components (e.g., average ages of stars, thermodynamical  state and phase 
structure of the ISM, etc.), locus within the galaxy, etc. The number of qual- 
itatively different types of subsystems is limited: for example, in our Galaxy 
we can distinguish the thin disk, the thick disk, the metal-rich bulge, the 
metM-poor stellar halo, and the dark halo; at most a few other types can 
be distinguished in other galaxies, for example the x-ray halos of ellipticals. 
Normal galaxies are composed of such building blocks in varying proportions, 
and this is what defines their morphological classification. Obviously, there 
are no sharp boundaries between them, and they are nested within the same 
potential wells. 

Distinct properties of galactic subsystems suggest that they have formed 
through distinct processes and/or  at distinct phases of galaxy formation. By 
trying to interpret their possible origins from their systematic properties, we 
may be able to map out the formative history of galaxies. For example, there 
appear to be only a few types of density distributions, as listed in Table 2. 
They are ubiquitous, perhaps representing "attractors" in the space of all 
possible density distributions - an idea which may be worth exploring. 

Table  2. Characteristic density structures of galactic subsystems 

Systems Density distribution Possible formation mech. 

EUipticals and 
n-body models 
Dwarfs 

Disks of spirals 
Dark halos 

Hubble-de Vaucouleurs 
type profiles 
Core-halo structures, 
exponential ellipsoids? 
Bi-exponential disks 
Isothermal spheres 
with finite cores 

Merging, rapid relaxation, 
with or w/o dissipation 
Galactic winds and 
adiabatic expansion 
Spinup, gradual infall 
Early collapse, merging, 
gravothermal instability? 

In the preceding sections we discussed the ttubble - de Vaucouleurs pro- 
files of ellipticals and the core-halo structure of dwarfs. The former seem to 
be reasonably well described as restricted maximum entropy solutions, but 
the origin of the power-law constraint remains unclear. The later appear to 
be prima facie examples of unrestricted maximum entropy solutions. It is 
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likely that  the formation of ellipticMs (as well as the products of cold col- 
lapse n-body simulations) involved a good deal of merging, regardless of the 
dissipation and star formation. On the other hand, dwarfs can hardly be 
merger products! Most models of their formation involve adiabatic mass loss 
and expansion, driven by a gMactie wind (Dekel & Silk 1986; Vader 1986; 
Yoshii & Arimoto 1987; etc.). The role of dark hMos in determining the dom- 
inant evolutionary paths and the final density configurations of the visible 
material is not yet well understood, but obviously it could be very important, 
given that  they account for >~ 90% of the total mass (cf. Burkert 1993). 

Formation of the (nearly) exponential disks is almost certainly accom- 
plished by an extended infall within tidMly spun-up dark halos. As shown 
by Mestel (1963), if the angular momentum is conserved and initiMly uni- 
formly distributed, the resulting mass distribution would closely resemble 
an exponential disk, with an outer edge determined by the maximum angu- 
lar momentum material. This is an intriguing, but by no means a definitive 
explanation. For example, Pfenniger (1989) proposed an appealing alterna- 
tive. There might well be a deep dynamical reason why such structures are 
commonly generated in rotationally supported systems, and the role of the 
massive dark halos within which they reside may be critieM. It is intriguing 
that  surface brightness profiles of dwarf galaxies are also close to being ex- 
ponential, but the data  so far indicate that  these systems are supported by 
velocity anisotropy, rather than by rotation. 

Density distributions within dark halos are readily deduced from the flat 
rotation curves of spirals, i.e., p(r) --~ r -~. Presumably the dark halos have 
cores, since the rotation curves drop as r -~ 0. This is a density structure 
(,,~ an isothermal sphere) which is naturally generated as a product of the 
gravothermal instability, or the core collapse (H~non 1961). Such structures 
are now readily observed in many Galactic globular clusters (Djorgovski &= 
King 1986), where the relaxation times are short enough for core collapse 
to occur within the Hubble time. In fact, core collapse is the only process 
which we know to actually produce such a density profile in the real universe. 
But how can massive dark halos, which presumably originated from random 
ripples in the primordial density field, be so highly dynamically evolved? 

One way of shortening their relaxation times is to postulate that they con- 
sist, or did consist, of very massive particles, perhaps Mdm ~ 10 6 M®, since 
for both Spitzer-Chandrasekhar two-body relaxation time, and Gurzadyan- 
Savvidy collective relaxation, tr ~ m -1. Lacey ~z ®striker (1985) proposed 
that  the dark matter  might consist of -,~ 10 6 M® black holes, but this hy- 
pothesis may be in conflict with the data  on wide binaries (Bahcall et al. 
1985). Suppose, on the other hand, that the dark matter consisted of com- 
pact star clusters, possibly made of brown dwarfs (Ashman ~= Cart 1988) 
of such a mass, which is indeed close to the Jeans' mass at the recombina- 
tion, Mj  ,,~ 106M® (Peebles & Dicke 1968). Then perhaps the dark halos 
could have been formed as aggregates of such primordial clusters. Increasing 
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the mass of the primordial halo "particles" would shorten their two-body re- 
laxation times appreciably. Furthermore, given the inevitable clumpiness of 
these proto-halos, appealing to faster relaxation processes, such as the vio- 
lent relaxation or the Gurzadyan & Savvidy collective relaxation, could well 
have lead to a rapid, early core collapse of dark halos. In this way one would 
naturally produce the r -2 density profiles. The hypothetical building-blocks 
dark clusters might be by now completely disrupted due to merging and tidal 
effects, thus avoiding any conflict with the statistics of binary separations. 
Their  remnants might be observable as halo brown dwarfs, either individu- 
ally, e.g., through direct imaging searches or gravitational microlensing, or 
collectively, e.g., through their IR emission (cf. Daly & McLaughlin 1992). 

While a number of distinct density forms can be defined among galac- 
tic subsystems, the dynamical or phase space density forms are trickier to 
disentangle. The dominant mass component (usually the dark halo) deter- 
mines the amplitude of the velocity field needed for support. Not much can 
be said beyond the trivial statement that  disks are mostly supported by rota- 
tion, and other systems mostly by pressure. However, as the thickness of the 
FP tells us, some selection of preferred dynamical structures does occur, at 
least among the ellipticals. One can speculate that maximum entropy or sta- 
ble configurations among self-gravitating systems will select not only specific 
types of density distributions, but also specific types of phase space density 
distributions. 

All this is just a very tentative, broad-brush picture. However, these rather 
general observations do point out a number of regularities in the structures 
of galaxies and galactic subsystems. Their understanding is a major  chal- 
lenge for the theory, and will hopefully lead to new insights in the physics of 
collective phenomena in self-gravitating systems. 
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Some Clues About  the Dynamics  of Globular 
Clusters  from High-Reso lut ion  Observations 
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Abstract. This review describes some of the high-resolution observations of 
the cores of globular clusters, obtained from the ground and with the Hubble 
Space Telescope (HST). Contrary to galaxies, whose distances are generally 
larger than 1 Mpc, implying unresolved stellar distributions, globular clusters 
have distances of the order of 10 kpc, which allow HST to resolve the brightest 
stars into grainy stellar distributions. We specifically discuss here some recent 
results on the galactic globular dusters NGC 6397, M15, and 47Tucanae. 

1. T h e  R e m a i n i n g  U n i q u e  Capabi l i t i e s  o f  H S T  

It is now common knowledge that  soon after launch, the in-orbit testing 
of the Hubble Space Telescope (ttST) revealed a serious optical problem 
with its 2.4 m primary mirror, which suffers from a substantial amount of 
spherical aberration due to an error when it was ground more than a decade 
ago (Burrows et al. 1991). This gives rise to grossly defocused images in the 
telescope focal plane, at all settings of the secondary mirror. 

The loss of energy in the core of the point spread function - -  the PSF 
is the image intensity distribution of a point source - -  is clearly visible in 
Fig. 1 (upper panel) where the simulated, originally expected, point spread 
function (left) is presented with the observed point spread function (right) 
obtained in orbit through the same filter, with the Faint Object Camera. Most 
of the light from the star is spread over a circle with a diameter of almost 
5". Fig. 1 (lower panel) shows that, apart from some energy in the core, 
not everything has been lost. The same simulated (left) and observed (right) 
point spread functions are displayed, but with a different upper intensity cut. 
It is conspicuous that  a sharp core is still clearly present in the observed point 
spread function. It contains only 15% of the energy instead of the expected 
80%, nevertheless, the diameter of this central core is only three pixels wide, 
which corresponds to 0.066" (FWttM).  

As a result of the flaw in the primary mirror, the point spread function of 
t tST has a tight diffraction-limited core, as expected originally, surrounded 
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sim  Fig. 1. The current 
problem and expectation 
of the Hubble Space 
Telescope (HST) are 
visualized in this figure. 
The upper panel displays 
the simulated, originally 
expected, point spread 
function (left) with its 
corresponding observed 
point spread function 
(right) obtained in orbit 
through the same filter, 
as observed by the Faint 
Object Camera. The 
loss in sensitivity is 
conspicuous. The lower 
panel shows the same 
data, but with a different 
upper cut. A sharp core 
is still present in the 
observed point spread 
function 

by an unexpected extended halo due to the spherical aberration. Contrary to 
many statements, it is not so much the high spatial resolution of the Hubble 
Space Telescope cameras that  has been compromised by the error in the 
mirror, but rather the limiting sensitivity: H S T  has lost three magnitudes in 
sensitivity, but for bright enough objects, its .~ 0.1" spatial resolving power 
is still present. In addition, HST has retained its ultraviolet observational 
capabilities. This makes HST a useful telescope for the study of globular 
cluster cores. 

2 .  N G C  6 3 9 7 :  t o  B e  o r  Not  to Be Collapsed 

Charge Coupled Device (CCD) observations have allowed, in the eighties, a 
systematic investigation of the inner surface brightness profiles of 127 Galactic 
globular clusters (Djorgovski & King 1986; Chernoff & Djorgovski 1989). 
These authors sorted the globular clusters into two different classes: i) the 
"King clusters", whose surface brightness profiles resemble a King model 
with a flat isothermal core and a steep envelope, and ii) the "collapsed-core 
clusters", whose surface brightness profiles follow an almost pure power law 
with an exponent of about  -1. In the Galaxy, about 20% of the globular 
clusters belong to the second type, exhibiting in their inner regions apparent 
departures from King-model profiles. They are consequently considered to 
have collapsed cores. 
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Fig. 2. Surface densities of the single-mass isotropic spherical models published by 
King (1966). Arrows indicate log rt for models with concentrations c = log(rt/rc) 
in the range 0.5 - 2.5. The observable part of a low-concentration model -"King 
clusters"- corresponds to a flat isothermal core and a steep envelope, when the ob- 
servable part of a high-concentration model -"collapsed-core clusters"- corresponds 
to an almost pure power law with an exponent of about -1  

The distinction between King and collapsed-core clusters is not always 
clear (see, e.g., Meylan &; Pryor 1993, and references therein). Integrated sur- 
face brightnesses measured for small areas in the cores of globular clusters are 
strongly dominated by statistical fluctuations in the small numbers of bright 
stars within the aperture.  Does the surface brightness profile of NGC 6397 
show any sign of core collapse? Maybe, since it increases toward the cen- 
ter and is bumpy  in its inner 100". This is especially true when observed 
through B or U filters, because of a high concentration of blue stragglers 
(Auri~re et al. 1990), which contribute strongly to the color gradient. How- 
ever, CCD observations in the core of NGC 6397, aperture photometry at 
intermediate radii, and star counts at large radii allow the construction of a 
surface brightness profile extending from the core out to 25'. The multi-mass 
King-Michie model which fits this surface brightness profile reasonably well 
has a very high concentration, viz., c = log(r t / rc)  "2_ 2.5, where rt and rc are 
the tidal and core radii, respectively (Meylan & Mayor 1991). Such a large 
value of the concentration is a clear indication that  NGC 6397 is dynamically 
highly evolved. 

In a similar way, Grabhorn et al. (1992) are able to fit successfully a multi- 
mass King model of even higher concentration, viz., e ~_ 3.0, to the surface 
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brightness profile of M15, the prototype of the collapsed-core globular clus- 
ters. These two successful fits may  indicate that  the dynamical  status of a 
cluster should be discussed in the context of the whole surface brightness pro- 
file, and may  be deduced from the value of its concentration. The power-law 
shape of the inner observable part  of a high-concentration profile, a power-law 
predicted by King and Fokker-Planck models may  be difficult to observe being 
subject to statistical fluctuations in the small numbers of bright stars. Conse- 
quently, any globular cluster with a concentration c = log(r t / rc)  ~> 2.0 - 2.5 
may  be considered as collapsed, or on the verge of collapsing, or just  beyond. 
(It  is worth mentioning that  the pre-, in-, and post-collapse terminology has 
only a theoretical meaning, since observations are unable to differentiate these 
three phases). The apparent  discrepancy between "King or power-law" and 
"concentration" criteria may  be reconciled with a look at Fig. 2, which dis- 
plays, for different concentrations c = log(rt/rc), a grid of models (King 
1966) which incorporate the two most  impor tant  elements governing globu- 
lar cluster structure: two-body relaxation and tidal truncation. We see that  
high-concentration models have profiles which, in their inner observable part ,  
are characterized by power-laws. 

Fig. 3. Part of an image of 
the core of NGC 6397 taken 
with the F/48 mode, through 
the F220W filter (2250.~) of 
the FMnt Object Camera on 
board the I-Iubble Space Tele- 
scope. The size of the image 
is 11 ~ × 11 '~ (Burgarella etal. 
1993). The luminosity center 
of the cluster is within 1H from 
the star marked by the arrow 

The recent HST observations of the core of NGC 6397, with the Faint 
Object  Camera,  fully resolve the core of this globular cluster and rule out 
definitely the presence of a bright central cusp in luminosity, a possibility 
not entirely eliminated by ground-based observations. The inner few seconds 
of arc, displayed in Fig. 3, are dominated by the presence of 6 bright blue 
stragglers, which, for a globular cluster, constitute a prominent  concentration 
of such stars (Burgarella et al. 1993). 
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Given its very high concentration, and independently of the shape of its 
inner surface brightness profile, NGC 6397 may be considered as core col- 
lapsed. The presence of the blue stragglers, possibly formed by mergers after 
collisions between two stars, may very well be a direct consequence of core col- 
lapse and its associated very high stellar density. Some indications of the fact 
that  these stars may have individual stellar masses higher than the turn-off 
mass (i.e., > 0.8 M®) are found in the more centrally-concentrated distribu- 
tion of the blue stragglers with respect to the subgiants of same magnitudes, 
possibly pointing towards the presence of mass segregation (Lauzeral et al. 
1992; see also Burgarella et al. 1993). There is no observed dynamical signa- 
ture of core collapse from velocity dispersion measurements (Meylan & Mayor 
1991; Dubath, Meylan, & Mayor 1993a), a dynamical signature which would 
be difficult to observe, anyway, according to theoretical predictions by, e.g., 
Grabhorn et al. (1992). 

3 .  M 1 5 :  a Prototype Collapsed-Core C l u s t e r ?  

The globular cluster M15 = NGC 7078 has long been considered as a proto- 
type of the collapsed-core star dusters. Early electronographic determinations 
of its luminosity profile by Newell & O'Neil (1978), confirmed by further pho- 
tographic and CCD studies (e.g., Auri~re & Cordoni 1981), reveal a central 
excess of light. Newell, Da Costa, & Norris (1976) found that these observa- 
tions were consistent with the existence of a central massive object, possibly 
a black hole of about 800 M®, while Illingworth & King (1977) were able to 
successfully fit dynamical models to the entire surface-brightness profile with- 
out invoking a black hole. The latter authors explained the central brightness 
peak as being caused by the gravitational effect of a centrally-concentrated 
population of neutron stars. 

Cudworth's (1976) proper motion study gave the first estimate of velocity 
dispersion in M15, Crp ,,~ 10kms -1, based on stars between 1.5' and 12' from 
the center. The only other published work providing comprehensive observa- 
tional constraints on the dynamics of M15 is Peterson, Seltzer, & Cudworth 
(1989). In their study, the velocity dispersion is derived from two different 
kinds of data: i) from individual radial velocities for 120 cluster members 
scattered between 0.1' and 4.6' from the center and ii) from integrated-light 
spectra of the central luminosity cusp. The radial velocities of the 27 stars 
within 20" of the center give crp = 14.2 ~ 1.9kms -1, while the integrated- 
light spectra suggest a cusp in the velocity dispersion profile, with C~p(0) of 
at least 25 kms  -1. According to the work of Peterson et al., the core of M15 
exhibits a sharp rise in velocity dispersion within the central few seconds of 
arc, a unique case among globular clusters. Peterson et al. (1989) find that 
this cusp in the velocity dispersion is consistent with neither the King-Michie 
models nor the post-core collapse models. They suggest that their observa- 
tions indicate a nonthermal velocity distribution, consistent with a central 
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black hole of about  1,000 M®. It is worth mentioning that,  from the radial 
distribution of the pulsars in M15, Phinney (1993) deduces that this cluster 
does not contain more than ~ 102 stellar mass black holes. 

Since the study of Peterson et ai. (1989), high-resolution imaging of the 
center of M15 has resolved the luminosity cusp into stars (the cusp was 
already part ly resolved in the images published by Auri~re et al. 1984). Im- 
ages with a FWHM resolution of 0.35 I~, taken by Racine ~z McClure (1989) 
with the High-Resolution Camera of the Canada-France-Hawaii Telescope 
(CFHT),  and, in particular, images with a FWHM of 0.08 tp obtained with 
the Planetary Camera of the Hubble Space Telescope (HST) by Lauer et al. 
(1991) show that  the cusp is easily resolved into a group of a few bright stars. 
On one hand, Lauer et al. (1991) show that  the surface-brightness profile of 
the residual light, obtained after subtracting the bright resolved stars, does 
not continue to rise at subarcsecond radii, but flattens off interior to a ra- 
dius of about 2% They determine a core radius of 2.2 ~t = 0.13 pc from their 
observations and argue that  the existence of a core, rather than a cusp, at 
the center of M15 indicates that the central dark matter  implied by the high 
central velocity dispersion measured by Peterson et al. (1989) does not belong 
to a massive black hole, but probably resides in a more diffuse form. On the 
other hand, from their own HST data, Yanny et al. (1993) find that a flat core 
is not apparent for r > 1.5% They find the radial distribution consistent with 
a number of scenarios, including: i) a central black hole of mass > 1000 M®; 
ii) a collapsed core with steep central profile a < - 0.75, and iii) a small flat 
core of radius ~< 1.5 ~ = 0.09pc. Earlier reports of weak color gradient in the 
center of M15 (Bailyn et al. 1988) are confirmed in the sense that  bright red 
giants are depleted in the center relative to subgiants, but  the depletion of 
very blue HB stars counteracts this bluing (Stetson 1991). 

Recently, but see also King (1989), Grabhorn etal .  (1992) successfully 
fit the high-resolution surface-brightness profile determined by Lauer et al. 
(1991) with the profile predicted by multi-mass King and Fokker-Planck 
models. Their  predicted velocity dispersion profile from Fokker-Planck mod- 
els matches the observations of Peterson et al. (1989) reasonably well, except 
for the Crp(0) = 25kms  -1 central value. This is conspicuous in Fig. 4, from 
Grabhorn et al. (1992), where the velocity dispersion profile, even in deep 
core collapse, never reaches the Peterson et al.'s high value. A simple extrap- 
olation of the deep core collapse profile (Fig. 4) reaches c~p(0) = 25kms  -1 
only within 0.006 ~', i.e., over an area significantly smaller than the 1 ~t sam- 
pling area of Peterson et al. (1989). Do we really need a massive black hole 
to explain the observations of M15 ? Are the results of Peterson et al. (1989) 
statistically significant ? 

As part  of a long-term program to determine the central velocity disper- 
sion in the cores of high-concentration and collapsed-core globular clusters, 
Dubath, Meylan, &= Mayor (1993a,b) obtained, at the European Southern 
Observatory (ESO) at La Silla, Chile, an integrated-light spectrum of the 
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Fig.  5. Normalized cross-cor- 
relation functions, i) of the 
spectrum of liD 203638, a stan- 
dard K0 giant star, ii) of the in- 
tegrated hght spectrum of the 
central 6" × 6" area in the core 
of M15 = NGC 7078, and iii) 
of the integrated light spec- 
trum of the central 6" × 6" area 
in the core of another galactic 
globular cluster, NGC 362. The 
continuous hnes are the corre- 
sponding fitted Gaussians. The 
important broadening of both 
cluster cross-correlation func- 
tions as well as the asymmet- 
rical shape of the M15 cross- 
correlation function are con- 
spicuous (Dubath et al. 1993b) 

core of  M15. Fig. 5 displays the cross-correlat ion funct ion (CCF)  of the spec- 
t r u m  of a s t anda rd  K0 giant  star,  of  the integrated- l ight  spec t rum of the core 
of  M15, and  of the C C F  of the in tegrated- l ight  spec t rum of the core of the 
Galac t ic  globular  cluster N G C  362, all three spec t ra  having been obta ined  
under  identical  condit ions.  T h e  C C F ' s  of the spec t ra  of  HD 203638 and of 
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NGC 362 are displayed in order to show how similar to a Gaussian the typical 
CCF's obtained for standard stars and for other Galactic globular clusters 
can be. Totally unexpectedly, and despite the high signal-to-noise ratio of 
the observed spectrum, the cross-correlation function of the M15 spectrum is 
bumpy, as if it were the sum of two different Gaussians. This large departure 
from the usual Gaussian function is larger than the deviations produced by 
the spectrum noise. Such a behavior (also present in the CCF of Peterson et al. 
1989) of the cross-correlation function is expected only if the integrated-light 
spectrum is completely dominated by the contribution of the few brightest 
stars lying inside the sampling area (slit) of the spectrograph. 

The significant Doppler broadening, due to the spatial random motions of 
the stars, of the CCF's of both clusters is conspicuous when compared with 
the stellar CCF of HD 203638. The standard deviation of the intrinsic stellar 
CCF (O ' ref  = 7.0 kms  -1) is defined by the mean value of the measurements 
of a sample of standard stars of appropriate spectral type. The velocity dis- 
persion crp is then computed with o'p 2 = crete 2 - Crref 2. The integrated-light 
spectrum of Dubath, Meylan, &: Mayor (1993b) over a central 6" × 6" area 
leads to a projected velocity dispersion ~rp(0) = 14.0 kms  -1. 

It is worth mentioning that,  because of a larger sampling area, Dubath 
et al. would probably miss any central cusp in velocity dispersion. The impor- 
tant point here comes from the bumpy shape of both Dubath et al.'s and Pe- 
terson et al.'s CCFs, pointing towards probable sampling problems. A quan- 
titative estimate of the sampling uncertainties affecting the central velocity 
dispersion measurements of M15 is absolutely necessary for further interpre- 
tations of any results. Detailed and exhaustive numerical simulations, with 
different sampling apertures (1" × 1" in the case of Peterson et al., and 6" × 6" 
in the case of Dubath et al.), of the CCF's of integrated-light spectra in the 
core of M15 have been carried out by Dubath et al. (1993b). The results may 
be summarized by two points: i) The noisy shapes of the Peterson et al.'s and 
Dubath et al.'s observed CCFs of M15 are qualitatively easily reproduced by 
the simulations, ii) with the above ~p = 14kms -1 as input data, the value 
O'p = 15 +6 s -1 -4 km is obtained over an area of integration of 6" × 6". 

A precise estimate of the sampling errors in the results of Peterson et al. 
(1989) cannot be directly deduced from Dubath et al.'s simulations, the two 
cross-correlation techniques being not exactly the same. Nevertheless, Dubath 
et al.'s simulations adapted to Peterson et al.'s case suggest that  the sampling 
errors in their results are much larger than in Dubath et al.'s case and larger 
than what has been acknowledged so far (see also Zaggia et al. 1993 and 
references therein). The observational evidence for a central cusp in velocity 
dispersion in the core of M15 is therefore not convincing. There are also some 
inconsistencies in the radial velocities obtained by Peterson et al. (1989) from 
their different velocity dispersion values. Dubath et al.'s simulations indicate 
that  a very accurate measurement of the velocity dispersion within the central 
few seconds of arc in the core of M15 cannot be achieved from integrated- 
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light measurement. Further work is clearly needed in order to confirm, or 
disprove, the significance of the large central velocity dispersion measured by 
Peterson et al. (1989) in the core of M15. Observations with a Fabry-P~rot 
interferometer will be of great interest, and will perhaps be able to solve this 
enigma. It would be very interesting to get some observational evidences that 
M15 may very well be one of the few galactic globular clusters caught in a 
state of deep core collapse. 

4.  T h e  R i c h  S t e l l a r  P h e n o m e n o l o g y  o f  47  T U C  

For decades, 47 Tucanae has been known as one of the most massive globu- 
lar clusters in our Galaxy. Well observed and well studied, photometrically 
and kinematically, it has a rather high concentration, viz., c _~ 2.1, but is 
perfectly well fitted by multi-mass anisotropic King-Michie models and may 
be considered as slowly evolving through quasi-equilibrium states towards its 
ultimate fate of core collapse (Meylan 1989). During the last few years, there 
has been an increasing amount of direct and indirect observational evidence 
for stellar encounters and collisions in the core of 47 Tucanae, including the 
presence of: 

1. eleven millisecond pulsars, some of them binaries (Manchester et al. 1990 
and 1991), 

2. blue stragglers within 20" of the core (Paresce et al. 1991), 
3. two high-velocity stars ejected out of the core (Meylan, Dubath, ~c Mayor 

1991), 
4. four X-ray sources detected by ROSAT (Verbunt et al. 1993). 

Similar evidence of ongoing stellar phenomenology are also found in other 
globular clusters, though in more limited numbers. Another way to estimate 
the effect of dynamical and stellar evolutions comes from color and population 
gradient studies (Djorgovski & Piotto 1993). The core of 47Tucanae, with 
rc ~ 25" (Meylan 1989), was resolved a long time ago from the ground. 
Two recent studies, using HST observations have investigated, at high spatial 
resolution, the inner structure of this cluster, looking for color and population 
gradients and for possible signs of core collapse or the presence of a central 
massive object. 

Calzetti et al. (1993), using observations taken with the HST Faint Ob- 
ject Camera, have investigated the position of the center of the cluster. They 
determine, first, the "center of luminosity" with the mirror autocorrelation 
technique, and, second, the "center of gravity" with the mirror autocorre- 
lation technique applied not to the whole light but to the stars considered 
point-like with equal weights. The difference of 6" between the two center 
positions would be an interesting observation, but it is actually of the order 
of the uncertainty on the position of the center of luminosity as determined 
by autoeorrelation technique. Assuming that their center of gravity is the 
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Fig. 6. Left: The projected density profile of all stars observed in 47Tucanae by 
Guhathakurta et M. (1992). The best fitting King profile is shown by the lowest of 
the three curves. The two upper curves, evolving central compact objects, are ruled 
out at the 90% and 95% confidence levels. 
Right: The radial surface brightness profile of the residual light well fitted by a King 
profile. Following Guhathakurta et al. (1992), there is no evidence for luminosity 
cusp in 47 Tucanae 

true center of the cluster, these authors find a density profile which shows a 
central cusp with a core radius of about  8" and which deviates significantly 
from a King profile up to 13" from the center. 

The above results are in disagreement with those from Guha thakur ta  et al. 
(1992). Using observations taken with the HST Planetary Camera,  they show 
that  the region within 1 t f rom the center contains a centrally concentrated 
populat ion of blue stragglers. The radial profile of the projected stellar den- 
sity (giants) is flat in the central region, with a core radius rc = 23" -4- 2" 
(Fig. 6 left). No signature of a collapsed core is evident, as already noticed by 
Djorgovski ~z King (1984). The surface brightness distribution of the diffuse 
residual light has a core radius rc = 26" (Fig. 6 right) that  is marginally 
larger than that  of the giant stars. The difference between these two core ra- 
dius values may  be an indication of mass segregation, since the faint stars at 
or just  below the main  sequence turn-off that  contribute most  of the residual 
light are slightly less massive than the giants. 

Among the galactic globular clusters studied in detail so far, 47 Tucanae 
contains by far the largest amount  of indirect evidence of stellar collisions 
and encounters. There is no dynamical  signature of core collapse, either from 
surface brightness profile or from velocity dispersion profile, a signature not 
expected anyway given the concentration of 47 ~ t canae  only marginally high. 
The two high-velocity stars ejected out of the core may  be indications that  
47 Tucanae is burning its primordial  binaries in order to delay its core col- 
lapse. 
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5. C o n c l u s i o n s  

At the present stage of understanding of globular cluster dynamical evolu- 
tion, we need more sophisticated models constrained by more numerous data  
of better  quality~ as, e.g., high-quality star counts, proper motions, and radiM 
velocities. During the last few years, numerous studies of high-concentration 
globular clusters, with c = log(rt / rc)  >~ 2, have confirmed observationally 
what was strongly suspected: stellar evolution and stellar dynamics are inti- 
mately connected. Studies concerning individuM stars as well as those devoted 
to integrated properties of stellar distributions (e.g., color and population 
gradients) show that  stellar encounters, collisions, mergers, complicate and 
enrich the dynamical study of globular clusters, considered as simple systems 
not long ago! 
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1. O b s e r v a t i o n a l  E v i d e n c e  

Direct observational evidence for a diffusion of stellar orbits in velocity space 
is provided by observations of the velocity dispersions of stars in the solar 
neighbourhood (Wielen 1977; Wielen et al. 1992) which show a marked in- 
crease with stellar ages. This could be either due to higher velocity dispersions 
of the interstellar gas, out of which the stars were born, at earlier epochs of 
galactic evolution or an increase of the velocity dispersions of the stars dur- 
ing their lifetime. We have argued before that if the increase of the velocity 
dispersion solely reflects the velocity dispersions with which the stars were 
born, this would mean an undue preference of the present epoch of galactic 
evolution, since the velocity dispersions of the stars would have then dropped 
very rapidly over the last 2.109 years (cf. Fig. la). We conclude thus, that 
the stars have experienced stochastic accelerations by inhomogeneities of the 
galactic gravitational field, leading to a continuous increase of the velocity 
dispersions with stellar ages. 

2. P h y s i c a l  M e c h a n i s m s  

Any inhomogeneities in the matter distribution in the galactic disk imply sta- 
tistical fluctuations of the galactic gravitational force field, g~, which perturb 
the stellar orbits in the galactic disk and will eventually lead to an increase of 
the stellar velocity dispersions. The increase may be described quantitatively 
by diffusion coefficients and for weak fluctuations these are quite generally 
given by (Fuchs 1980) 

t 

' 

- - 0 0  

(1) 
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where X(t) denotes the phase space coordinates of the unperturbed stellar 
orbits. In the case of gravitational encounters of the kind we consider here 
there are no spatial elements of DgA. 

However, in order to make specific predictions for the evolution of the 
velocity distribution of the stars under the influence of the perturbers a num- 
ber of concrete physical mechanisms of stochastic acceleration of stars in the 
galactic disk have been discussed in the literature. Among these are 

(a) deflections of stellar orbits by giant molecular clouds (Spitzer & Schwarz- 
schild 1951, 1953; Lacey 1984), 

(b) scattering of stars by massive black holes from the galactic halo (Lacey 
& Ostriker 1985), 

(c) stochastic heating of the galactic disk by transient spiral density wavelets 
(Sellwood & Carlberg 1984; Jenkins &= Binney 1990), or 

(d) heating of the galactic disk by infalling, disrupting satellite galaxies (T6th 
Ostriker 1992). 

All these mechanisms are probably responsible to some degree for the 
diffusion of stellar orbits in the galactic disk. But the physical nature of the 
diffusion driven by these mechanisms is at present only well understood in 
the first two cases so that  we concentrate here on these. 

Spitzer & Schwarzschild (1951, 1953) assume plane galactic orbits in 
epicyclic approximation. The gravitational encounters between the stars and 
the giant molecular clouds lead to accelerations of the stars which are mere 
random deflections of the stellar orbits but leave the speed of the stars un- 
changed. The size of an epicycle is determined by the radial action integral 
or "epicyclic energy", Jr = U 2 + (~2/4B2)V2, with U the radial and V the 
azimuthal velocity components, while ~ and B denote the epicyclic frequency 
and Oort's constant, respectively. If the encounters are assumed to be instan- 
taneous the average gain of radial action per unit time is (Wielen & Fuchs 
1983) 

(SJr) = (~- -~-  l )  (U2- V~) ((50) 2} (2) 

with the 3-dimensional mean square deflection ((5t9) 2 } = 47rG2ncrn2¢ In aAr/  
(U 2 + V2) 3/~, where no, mc are the spatial density and the mass of the clouds, 
respectively (Spitzer ~ Schwarzschild 1953). Averaged over one epicyclic pe- 
riod the average gain of radial action is 

d r  oc ~ - 1  ~ -  so that  Jro(r 2/a (3) 

and the velocity dispersions grow as (U 2} c~ (V 2} o( Jr. Note that  the 
mechanism works only for non-circular epicycles, (U 2} # (V 2 } or ~2/482 
1. The mechanism is not very efficient in accelerating stars. Assuming mc = 
5.105M® and ncmc = 0.02 M®/pc 3, as in the solar neighbourhood, and a flat 
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galactic rotation curve, n2/4B 2 = 2, the radial velocity dispersion of stars of 
the age of 101° yr would be only 29 km/s  if this were the only diffusion process, 
whereas the observed radial velocity dispersion is about 55 km/s.  However, 
there is a very considerable spatial dispersion related to this process. The 
rms deviation from the mean radius increases as ( ( r -  r0) 2) = 26.2 (V 2) /x  2, 
assuming again a flat rotation curve. At a mean distance of r0 = 8.5 kpc from 
the galactic center this implies for stars with an age of 101° yr a r m s  radial 
deviation of 4 kpc from their mean radius. 

In contrast to the giant molecular clouds with their small peculiar veloci- 
ties massive black holes from the galactic halo would have such high velocities 
when they penetrate the galactic disk that they could actually change the 
speed of stars by gravitational encounters (Lacey & Ostriker 1985). The ran- 
dom accelerations add up statistically which may be described again quantita- 
tively by diffusion coefficients, ~ ,  ( ( AUi ) 2 ) = Du dr, ~ ,  ( ( A V~ ) 2) = Dv dr, 
~] , ( (AWi)  2) = D w  dr ,  where W denotes the vertical stellar velocity com- 
ponent. In this case we have 

dYr ~2 
dT" - D u + ~ - ~ D v  so that  Jr o¢7- (4) 

and again the velocity dispersions grow as (U 2) o¢ (V 2) o¢ (W 2) o¢ Jr. 
Wielen (1977) has shown that such relations may be fit nearly ideally to 
the observations allowing thus the empirical determination of the diffusion 
coefficients as Du = Dv = D w  = 2 • 10 -7 (km/s)2/yr .  The spatial diffusion 
related to this process is not as pronounced as in the Spitzer-Schwarzschild 
mechanism. The rms radial deviation from the mean galactocentric radius 
increases only as ( ( r -  r0) 2) = 2.3 (U2)/~ 2 in the case of a flat rotation 
curve. 

3 .  N u m e r i c a l  S i m u l a t i o n s  

The discussion of the diffusion of stellar orbits as outlined above involves 
a number of approximations, the most restrictive being the approximation 
of instantaneous acceleration by gravitational encounters. In order to avoid 
such approximations we have performed a series of numerical simulations 
of the diffusion of stars in the galactic disk. Orbits of stars are calculated 
by numerical integration in a rotating frame representing a patch of the 
galactic disk which is populated by various perturbers modelled as small 
P lummet  spheres. The distribution of these objects is extended periodically 
in neighbouring frames which slide along the central frame according to the 
differential galactic rotation. We are thus able to follow the time evolution 
of the three-dimensional velocity distribution function of the stars as well as 
the evolution of the vertical structure of the disk. 

Results for the 3-dimensional velocity dispersions are shown in Fig. la  
in comparison with the observed velocity dispersions of stars in the solar 
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Fig. 1. Velocity dispersion (a, left), radial diffusion (b, middle), and tangential 
diffusion (c, right) of black-holes and giant molecular clouds as a function of time 

neighbourhood. The black holes are assumed to have masses of 5.106 M® and 
to be distributed homogeneously with a density of 0.01 M®/pc 3. Their orbits 
are randomly oriented straight orbits with a typical velocity of 155km/s .  
Their P lummer  radii are set arbitrari ly to 10 -6 pc. The giant molecular clouds 
with P lummer  radii of 20 pc, on the other hand, are assumed to have masses 
of 5 • 105 M® and to be distributed in a narrow disk with a vertical scale 
height of 70 pc and a density of 0.02 M®/pc 3 at the midplane. They orbit 
on epicyelie orbits corresponding to a 3-dimensional velocity dispersion of 
5 km/s .  As expected the diffusion driven by black holes leads to a velocity- 
dispersion-age relation which fits well to the observations, but the diffusion 
driven by giant molecular clouds is much too inefficient. Due to the small scale 
height of the molecular cloud distribution the slope of velocity-dispersion-age 
relation is even flatter than a "rl/3-law (cf. Lacey 1984) and does not fit to 
the observations even if the masses of the molecular clouds were increased. 
In Figs. lb-c the corresponding spatial diffusion is illustrated. Both processes 
lead to a marked radial dispersion, but in particular to a dispersion in the 
tangential  direction. This is due to the scattering of stars from their original 
epicycles onto epicycles with different guiding center motions so that  they 
drift rapidly away in the tangential direction. 

The mean galactocentric radius r0 of a stellar orbit, however, is left un- 
changed by the diffusion processes. This implies that  the exponential radial 
density profile of the galactic disk is not changed by the diffusion of stellar or- 
bits. But the spatial dispersion will lead to an enhanced mixing of stars from 
different par ts  of the galactic disk. This effect is clearly seen in the dispersion 
of the metallicities of stars of a given age and at a certain galactocentric ra- 
dius. Assuming that  the mean radial variation of the metallicity of the stars 
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Fig. 2. Metallicity dispersion of various 
groups of stars of different ages as a 
function of the spatial dispersion 

may be approximated as ([Fe/H]>, = ([Fe/H]>,o + d ( [ F e / H ] } .  (r - r0), the 
dispersion of the metallicities is related to the spatial dispersion as 

( ( [ F e l H ] -  ([Fe/H])) ~) i/2 d = dr ([Fe/H]> • ((r - r0)2> I/2. (5) 

In Fig. 2 metallicity dispersions of various groups of stars of different ages are 
shown. The metallicity dispersions which we predict using the spatial disper- 
sion of stellar orbits found for the diffusion process driven by massive black 
holes (cf. Fig. Ib) and adopI~ing a mean gradient of 0.1 kpc -I (Grenon 1987) 
are drawn versus metallicity dispersions observed in the solar neighbourhood 
(Edvardson et al. 1993, cited in Freeman 1991). The error bars indicate sta- 
tistical uncertainties. The individual accuracy of the observed metallicities is 
about 0.i dex. The close correlation between the predicted and the actually 
observed metallicity dispersions indicates that the spatial dispersion of stellar 
orbits due to the diffusion process contributes significantly to the scatter of 
the metallicities of the stars in the solar neighbourhood. 

4. D i s c u s s i o n  

The scenario of massive black holes from the galactic halo driving the diffusion 
of stellar orbits explains successfully many of the observed characteristics of 
the distribution of the disk stars in phase space, not just only the age-velocity 
dispersion-relation but also the shape of the velocity distribution or the global 
variation of the velocity dispersion as function of galactocentric distance in 
the Galaxy (Wielen et al. 1992). Giant molecular clouds do not seem to heat 
the galactic disk very effectively. But they might play a crucial role if the 
primary source of heating the disk are short lived density wavelets because 
these lead predominantly to an increase of the planar velocity components of 
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the stars. Molecular clouds are then required to build up the vertical velocity 
distribution by deflections of stellar orbits out of the galactic plane (Jenkins & 
Binney 1990). Unfortunately, the excitation rate of the density wavelets is at 
present not quantitatively known. The effects of satellite galaxies sinking into 
disk galaxies and depositing their orbital energy as kinetic energy of the disk 
stars are presently studied in great detail (Quinn et al. 1993; Athanassoula 
1993). However the duration of a single accretion event is only of the order of 
109 years so that the diffusion of stellar orbits would then depend to a large 
degree on the accretion rate of satellite galaxies which is presently discussed 
rather controversial. 

One of the principal difficulties of the scenario of massive black holes as 
the main constituents of the dark galactic halo is that  one would expect a 
considerable dynamical evolution of the core of the black hole distribution 
near the galactic center. Due to dynamical friction such black holes spiral 
towards the galactic center and might eventually coalesce there. This accre- 
tion is balanced by "loss cone" depletion of stars near the galactic center 
due to the strong fluctuations of the gravitational field induced by the black 
holes and by "slingshot" effects of the black holes among themselves ejecting 
black holes from the core region. Hut & Rees (1993) argue that the latter 
mechanism might be not as effective as was previously assumed and conclude 
that  about  100 of such massive black holes will reside close to the galactic 
center which is in clear contradiction to the observed kinematics of stars and 
interstellar gas near the galactic center. However, the interplay of the various 
dynamical effects is rather subtle and more refined numerical simulations of 
the dynamical evolution of the inner part of the black hole distribution are 
required in order to reach a more definitive conclusion. 
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1. I n t r o d u c t i o n  

Stellar dynamics is one of the few well-established disciplines which has con- 
tinuously at tracted theorists throughout the present century. Moreover in 
recent decades a huge army of computer simulators has also entered this field 
in a very active way. Given these tremendous efforts one would have hoped 
to have had more results than we have today. Indeed one cannot claim that  
we unambiguously understand, say, even the basics of the structure of spiral 
galaxies, or of their origin and further evolution. 

In my opinion this situation is only demonstrating the difficulty of the 
problem of the dynamics of gravitating systems. Ironically, the main problem 
of stellar dynamics was shown to be "unsolvable ~ before stellar dynamics 
itself was established in the first decades of this century. By this I mean the 
proof by Poincar~ in the 1890's of the non-integrability of the gravitating 
N-body problem for N > 2. 

Numerous approaches have been used to attack the dynamics of stellar 
systems, including various modifications of statistical mechanical, kinetic, hy- 
drodynamical,  celestial mechanical, and other methods. The treatment from 
the standpoint of ergodic theory can be considered as another possibility. As 
understood first in [1,2] 1 , it seems to reveal some profound aspects of the 
dynamics of stellar systems. 

Below we will outline the key points of this approach, confining ourselves 
mainly to its methodological aspects. We also mention some advantages of 
this technique, while unsolved problems are listed in [3]. A more detailed 
account of these methods in the context of astrophysical and especially cos- 
mological problems is contained in our recent monograph [4]. 

First let us note that  by the term "stellar system" we mean a system of 
N point-like objects interacting by Newtonian gravity, i.e., described by a 

That study was done in the spring of 1983 (preprint EPL678(68), 1983); we 
then had to wait one year (!) to get permission to send the manuscript abroad to 
Astronomy gJ Astrophysics. 
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Hamiltonian 

( a , i )  ~_ U(r) (1) H ( v ,  r) = , 
a=l i = l  

Gmamb 
V(r) : -- Z Irab------~-- ' t a b  ~-- r a  - -  r b  " (2) 

a < b  

In principle the generalisation of at least some of the results is possible for 
non-point-like objects, but we will not consider that  case here. 

The main problem to be addressed by an ergodic theory approach is to 
discover to which class of dynamical systems stellar systems belong and to 
reveal the meaning of abstractly formulated properties in the context of those 
physical systems. 

2.  D y n a m i c a l  S y s t e m s  

To have a discussion which is as self-contained as possible, we briefly present 
the elements of ergodic theory concerning the classification of smooth dynam- 
ical systems by the degree of their statistical properties. A detailed account 
of these points can be found in books on ergodic theory (see e.g. [5,6]). 

Saying that  (M, B, #, T) is a dynamical system, where M is a smooth 
manifold, B is a a-algebra of measurable sets on M, and # is a complete 
normalised measure on B, we mean that  T t is a differentiable one-parameter 
group of diffeomorphisms (a flow) defined by vector field v (the phase veloc- 
ity) on M 

dTt x 
v ( x ) -  dt (3) 

The classification of flows following from ergodic theory includes ergodic sys- 
tems, systems with mixing, K-systems, Axiom-A systems, and Anosov sys- 
tems. 

In the case of ergodic systems, for any measurable invariant set A 

TtA = A = T- tA ,  (4) 

its measure it should have the values 

w ( A ) = { 0  , (5) 
1 

For measure-preserving ergodic transformations the time-average almost ev- 
erywhere equals the phase space average 

/ M f d i t =  t--+=lim _lt Jof'~ (~) 
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and all trajectories of the system pass through almost  all points of the man-  
ifold M.  This property, being both a necessary and sufficient condition of 
ergodicity, is often considered as a definition of an ergodic system. Ergodic- 
ity is also defined on manifolds with infinite measure but it is a rather weak 
statistical property. 

A stronger and therefore more interesting property for physical problems 
is the property of mixing. Different levels of mixing exist. A dynamical  system 
is said to possess the property of weak mixing if V f ,  g E L 2 

l iml fot[ /M fM fM ]2 t--.oo t f(T-rx)gdli - fdli g d #  d r  = 0;  (7) 

the property of mixing (strong mixing) if 

t~ rn /Mf (T tx )gd l i=Lfd#Lgd l i ;  (8) 

and the property of n-fold mixing if 

m 

l im /M H f f i d p  (9) t, ..... ,,~---,c~ fofl (T tl x)...  fm (T t~ +'''+t" x) dli :- 
i = 0  M 

These properties describe systems with increasingly stronger statistical prop- 
erties in the sense tha t  systems with mixing possess the property of weak 
mixing, and those with n-fold mixing also that  of mixing and weak mixing 
but not vice versa. 

Therefore systems with mixing are also ergodic ones. However, for the 
systems with mixing, as opposed to ergodic ones, a set A E B evolves in 
such a way (preserving its measure and connection) that  the measure of the 
par t  which intersects the set B E B tends in t ime to be proportional to the 
measure of B 

P ( TtA ['1 B) 
lim - p ( B ) .  (10) 
t--,= p(A) 

This property implies the existence of a final state of measure # to which 

lit(A) = lio(TtA), A E 13 (11) 

tends continuously, so that  

t~m fMf d,t = fMf dli. (12) 

It  is natural  to call the final state given by li equilibrium and the process of 
tending to that  s tate relaxation. 

Thus we see tha t  only with systems with the mixing property can one 
speak about  a relaxation process and an equilibrium state, which is not pos- 
sible for systems which are only ergodic. This fact is clearly seen from the 
difference between the limit 
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lim 1 f0 t t--+o~ -t #(T-~'A N B) d r  = p(A) #(B),  ( 1 3 )  

for ergodic systems and the limit (10) for mixing ones; the first limit is said 
to be convergent in the Cesaro sense, while in the second case one has real 
convergence, i.e., for ergodic systems the initial fluctuations tend to zero only 
in the time-average, while for mixing systems their absolute value decreases 
as well. 

The weak mixing is not sufficient as well, as follows from the limit 

1 
~ o t [ p ( T - " A A B )  p ( A ) p ( B ) [  dv 0, (14) lira 

t - .oo t 

implying that  T t A  becomes independent of the set B only if some parts of 
the trajectory are not taken into account. 

Even stronger statistical properties characterise K-mixing/Kolmogorov 
systems for which the following limit 

lim sup [p(A N B) - #(A) #(B)I = 0 (15) 
t -+oO 

exists, where the upper limit is taken for the smallest a-algebra containing 
sets T t° A for t < to. Kolmogorov systems possess n-fold mixing with arbitrary 
n. The strongest statistical properties characterise hyperbolic (Axiom-A), 
Anosov, and Bernoulli systems. 

A dynamical system f t  is said to be of Anosov type if for its all trajecto- 
ries { f t }  there exist subspaces E S ( f t ( x ) ) ,  E U ( f t ( x ) )  of the tangential space 
TM/ , ( x ) ,  and numbers C > O, A > O, such that  

T M / , ( x )  = E ~ ( f t ( x ) )  • E ~ ( f t ( x ) )  , 

d f r E  s ( s t ( x ) )  = E s ( f t + r ( x ) )  , (16) 

dSTE (St(x)) = E ( f + T ( x ) ) ,  

and for all t > 0, one has 

[[dftv[[ < C e  -:~t []vii , v C E" ; 

Ildftvll _> c -xe~t I l v l l ,  v c E ~ . ( 1 7 )  

The subspaces E s and E u are called the stable (converging) and unstable 
(expanding) subspaces. Anosov systems are a typical subclass of hyperbolic 
systems. Geodesic flow on a compact manifold with negative constant cur- 
vature, studied long ago by Hadamard, Hopf and Hedlund, is an example of 
an Anosov system [7]. If the systems with mixing can tend to equilibrium by 
any law (e.g. polynomial), then Anosov and Axiom-A (hyperbolic) systems 
tend to that  state exponentially. 

The problem of distinguishing different features of dynamical systems, 
and the formulation of corresponding characterising criteria is one of the 
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central ones in ergodic theory. Many efforts in this direction have concerned 
the study of the so-called spectral properties of dynamical systems, and after 
1958, when Kolmogorov discovered the new metric invariant, the entropy, 
also the entropy theory of dynamical systems. 

Consider the entropy of a splitting ~i of the measurable manifold M 

d 

H(~) = E #(~') ln(~,),  (18) 
i----1 

where ~i E B and 

d 

i~j  i = I  

Then the Kolmogorov-Sinai (KS) entropy h is the limit 

n - - 1  

h(f) = sup lim 1 H ( ~ n ) ,  where ~ =  V f-J~' (20) 
n--+ OO n 

j=O 

and the upper limit is taken over all measurable splittings. 
Dynamical systems with positive KS-entropy h > 0 are usually called 

chaotic, while those with h = 0 are called regular ones. In particular, Anosov 
and Kolmogorov systems, which are typical systems with mixing, have posi- 
tive KS-entropy h > 0, while most of only ergodic ones have h -- 0. Therefore 
the latter are not considered to be chaotic according to this definition. 

For the above mentioned geodesic flows on spaces with constant negative 
curvature R < 0, the KS-entropy equals 

h = (21) 

The KS-entropy is related to the Lyapunov characteristic exponents hl 
via the Pesin formula: 

h(s) = fM (22) 
~( )>0 

we see that  a system with at least one non-zero Lyapunov exponent has 
positive KS-entropy. 

Finally let us mention another important  characteristic of dynamical sys- 
tems, the correlation function, defined by 

= f g(s (23) 

Although at present estimates of the correlation functions (including numer- 
ieal results on some billiards) exist only for a few dynamical systems, for 
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Anosov systems it has been shown that  the correlation functions decay ex- 
ponentially, i.e., 3ag,g,, ~, t > 0 so that  

Ibg,g,(t)] <_ ag,g, e x p ( - ~ t ) ,  where ~ ~_ h( f )  . (24) 

3 .  Geodes ics  

As mentioned above geodesic flows on spaces with negative curvature were 
long ago an object of study in ergodic theory. In view of the method existing 
in classical mechanics even earlier, known as the Maupertuis principle [8], 
enabling one to represent the phase flow of a Hamiltonian system as a geodesic 
flow on some Riemannian manifold, one has a very real possibility of treating 
the gravitating N-body  problem with concepts of ergodic theory. Just this 
idea was the basis of the original study of stellar dynamics in papers [1, 2]. 
In physical problems this idea, as far as we know, was first used by Krylov 
[9]. 

By means of the Maupertuis principle the Hamiltonian equations 

OH OH 
- - , ( 2 5 )  

Op. ' Or; 

are reduced to the geodesic equation 

V u u  = 0 (26) 

on the region of configuration space 

M = { W  = E -  V(r)  > 0} 

with the Riemannian metric 

N 3 

ds 2 = [ E -  V(rl ,1, . . . ,rN,3)] ~ ~ (dra,i) 2 , (27) 
a = l  i=l 

where E is the total energy of the system. The condition of conservation of 
the total energy of the system 

H(p, q) = E (28) 

is equivalent to the condition on the velocity associated with the geodesic 

Ilull = 1,  (29) 

while the affine parameter  along the geodesic is determined by 

ds = v ~ ( E  - V(r ) )d t  . (30) 
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The statistical properties of the geodesic flow, particularly their depen- 
dence on the curvature of the manifold as mentioned above, are seen from 
the geodesic deviation equation 

v u v u ~  + mem(~,  u) u = 0 .  (31) 

This equation, known as the Jacobi (or Jacobi-Levi-Civita) equation, can be 
derived by direct differentiation of the geodesic equation along the deviation 
vector n and using the following expressions involving the Riemann tensor 

Riem(n, u)u -=- ([Vn, V u ] -  V[n ' u]) u = [Vn, Vu] u ,  
(32 )  

Vnu - V u n  = [n,  u] = 0 .  

For a vector field satisfying the condition of orthogonality 

(n,u)  = 0 ,  (33) 

the Jacobi equation may be expressed in the form 

d2llnl[2 - -2K,,,,f]nll 2 + 2[IVunll 2 (34) 
ds 2 

where K,,,n denotes so-called two-dimensional curvature 

(Riem(n, u)u, n) (Riem(n, u) u, n) (35) 
K . , .  = ilul1211nl$2 _ (u,  n )2  = Ilnll 2 

One sees that the Jacobi equation describes geodesics which diverge no 
slower than by an exponential law 

fin(s)[[ > 1]]n(0)IIexp (v/'L--~s) , s > 0  (36) 

if the following condition is fulfilled 

k = max{K,,,,,} < 0. (37) 

Geodesic flow in this case represents an Anosov system with the strongest 
statistical properties as mentioned above. Thus the strong negativity of the 
two-dimensional curvature is an important criterion linking the geometrical 
properties of the Riemannian manifold with the statistical properties of the 
geodesic flow. 

Before discussing the N-body problem we mention another case of trans- 
ferring the problem of motion in real space to the study of the properties of 
a Riemannian space. The problem concerns the study of the hydrodynamical 
equations of motion by means of the group of diffeomorphisms Sdiff(D) of a 
Riemannian manifold D with a one-sided invariant metric as considered by 
Arnold [10] (and later by a number of authors). 



50 V.G. GURZADYAN 

Examining the Lie algebra of all vector fields with zero divergence on the 
two-dimensional torus T 2, it can be shown that the kinetic energy of the 
element of the moving fluid induces a right-invariant Riemannian metric on 
Sdiff(T2). The principle of least action, which determines the motion of an 
incompressible fluid in terms of the geodesics of this metric, plays the role of 
the Maupertuis principle. In the context of stellar dynamics this method has 
been used in [11]. 

4.  C u r v a t u r e  

Turning now to the gravitating N-body problem, in view of the above con- 
siderations one should first calculate the two-dimensional curvature Ku,n for 
the Hamiltonian (1). This curvature was calculated and analysed in detail in 
[1, 2] and has the form 

1 
Riem#Avp -- 2W [gv~,WAp + gApWi, v - g~,pWA~, - g,,pW~,:~] 

3 
4 w 2  - g , , , .w j , )w , ,  + (9 .wJ, - ( 3 s )  

1 
4 w 2  - II°wIl  ' 

where 

O W  0 2 W  
g.~ = W S . . ,  W. = Or~ ' W.~ = ar .ar~  (39) 

As expected the quantity K~,n is sign-indefinite, taking both negative and 
positive values in different regions of phase space. 

However, it was shown that for configurations with a spherical distribution 
of coordinates and velocities, two-dimensional curvature is determined by the 
scalar curvature R 

R 
K~,,, -- 3N(3N - 1) (40) 

and is negative since the scalar curvature is negative for N > 2: 

3 N ( 3 N - 1 )  (4  1 ) y A W  
R = W3 2-N (V W )2-  ( 3 N - ) - W - T  < 0.  (41) 

From here, using results on the properties of geodesic flows on spaces with 
negative curvature as briefly described above, one can conclude that N-body 
systems situated in the region of phase space with negative scalar curvature 
have positive KS-entropy (determined by the value of the scalar curvature) 
and thus possess strong mixing properties peculiar at least to Kolmogorov 
systems. The KS-entropy, i.e., the scalar curvature, therefore determines the 
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rate of exponential decay of the correlation functions and the characteristic 
t ime scale for approaching an equilibrium state. If such a state exists one can 
speak about a relazation process. 

An important  property of systems with exponential mixing is their struc- 
tural stability (coarseness). In our case this means that some global properties 
of spherical systems, such as the number density of stars and their velocity 
dispersion, do not depend exactly on the initial conditions of the system, 
namely, on the coordinates and velocities of each star. In contrast some other 
properties depend on them strongly, e.g., two stars close at one moment later 
could be highly separated by the smallest change of those conditions. 

5. Hierarchy o f  Character is t ic  Time Scales o f  the  
Stel lar S y s t e m  

Arriving at the concept of the relaxation time of a stellar system we cannot 
avoid discussing the role of various characteristic time scales in the dynamics 
and evolution of the stellar system. In fact one can speak of a hierarchy 
of time scales since they are not only associated with different aspects and 
epochs of the evolution of the stellar system, but can also vary within rather 
different quantitative ranges for a single system. 

The sequence of these scales can be represented as follows: 

1. Tdy n non-stationary phase N-body 
2. TN_body stationary N-body 
3. 7 " b i n a r y  stationary 2-body 
4. Vevol  evolutionary effects N-body 

Which of these characteristic time scales can be designated as relaxation 
times? 

The dynamical t ime scale rdyn, as known since the classic result of Lynden- 
Bell, describes essentially non-stationary systems (violent relaxation) tending 
to a coarse-grained equilibrium. As we have seen above the linkage 

c u r v a t u r e  - geodes i c s  - K S - e n t r o p y -  m i x i n g  - e q u i l i b r i u m  
enables us to associate TN_body with the relaxation process leading to some 
equilibrium state (fine-grained state); more precisely it is the time scale for 
returning to the initial state of a perturbed quasi-stationary system. Evi- 
dently, both the Lynden-Bell violent relaxation time and this time scale take 
into account the gravitational interaction of all N particles of the system. 

Using some reasonable physical assumptions, an explicit formula for the 
characteristic relazation time scale has been derived in [1, 2] which can be at- 
tr ibuted to spherical systems with some average values of the number density 
of particles (stars) and of the velocity dispersion. The formula so derived does 
not coincide with that  of the well-known binary (Chandrasekhar) relaxation 
time scale evaluated for the same quantities and seems to be supported by 
observational data  on globular clusters and elliptical galaxies [12, 13, 14]. 
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In other words the contribution of two-body interactions for typical stellar 
systems seems not to be the dominant one among N-body interactions. In- 
deed, it is hard to imagine say that the dynamics of a particle from a typical 
3-body system would not be changed if the contribution of one of particles 
were neglected, or of the two particles from the 4-body system, etc. At the 
same time the mathematicM background we have used shows that when one 
speaks of the concept of a relaxation t ime scale for a stellar system one should 
understand clearly the approximations made in its definition, and hence its 
limited physical meaning. 

Indeed, from the sign-indefiniteness of the two-dimensional curvature it 
follows that no universal function 

7- : (all N-body systems) ---, R+ 

exists and hence no unique relaxation time scale can exist for all N-body 
gravitating systems. Moreover for the same system different physical quan- 
tities can relax to their equilibrium values in different times, others cannot 
relax at all, etc. 

By selecting those systems situated in the region of phase space with 
negative two-dimensional curvature, we thus limit ourselves to considering 
only the epoch of evolution of the stellar system during which the latter 
keeps its quasi-stationary spherical structure. In this local (in time) problem 
we ignore the radical modification of the system during the evolution, thus 
neglecting the main difficulty: the non-compactness of the phase space of the 
system. 

The main motivation for this assumption is the fact that the time scale 
revol of radical modifications of the system for real stellar systems greatly 
exceeds the time scales we discussed above. The evolution driving effects 
include both dynamical effects, such as evaporation of stars from the system 
and core collapse, as well as other effects (mass loss by stars, formation of 
binaries via tidal two-body interactions, star collisions, etc). In the latter case 
the problem is evidently not a purely stellar dynamical one. 

These considerations concern mainly spherical systems. The situation 
with disk systems, for example, is rather different. In [11], while studying the 
stellar motion in the disk of the Galaxy in the hydrodynamical approxima- 
tion, namely considering the Lie algebra Sdiff(T 2) with the current function 

of a velocity field 

(01  i ) g r a d ~  (42) 
V ~  __ 0 

the exponential instability of the motion was established, while the initial 
velocity field was shown to remain stable. The characteristic time of the 
instability is less than the period of rotation of the disk. This example, in- 
cidentally, indicates that not every exponential instability must be related 
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to relaxation. Another point of view on disk-like stellar configurations as 
dynamical systems with non-negative curvature is developed in [15, 16]. 

6 .  R i c c i  C u r v a t u r e  

The absence of rigorous results concerning many-dimensional nonlinear sys- 
tems with sign-indefinite curvature, together with doubts about the possibil- 
ity of having some distinguishing criteria of practical interest in the general 
case, force one to look for average geometrical characteristics. 

A criterion based on an averaged quantity, the Ricci curvature, was in- 
troduced in [17] as a measure of the relative instability of many-dimensional 
dynamical systems. The method has been already applied to the dynamics of 
stellar systems, to a system situated in a regular field (the regular field was 
shown to increase the degree of instability of the nonlinear system) [18], and 
to plasma configurations [19]. 

The idea is as follows. Average the :lacobi equation over the geodesic 
deviation vector 

d2z 1 
ds 2 3N r~(s) + (IIV~nH 2) where n = z~ II~[t 2 1,  (43) 

and r~(s) denotes the Ricci curvature in the direction of the velocity of the 
geodesic (Ric is the Ricci tensor) 

Ric(u, u) 3N-1 
u2 = (44)  

/~----1 

The Ricci tensor has the expression 

1 
Ric~p - 2W [AWg~p + (3N - 2)W~p] 

(45)  3 [ 3 (3N- 1)] 
+ [ ( 3 N  - 2)W Wp] - 4fV2 ] IIdWll  " 

The criterion of relative instability defined in [17] reads: 
the more unstable of two systems is the one with smaller negative r 

1 
inf [r~(s)] , r < 0 (46) r = 3N 0<s<s. 

within a given interval 0 < s < s . ,  i.e., this system should be unstable with a 
higher probability in the same interval. 

Recalling that  a i em  depends on (x, u, n), Ric depends on (x, u), and R 
depends on (x), one can see that while the scalar curvature R cannot contain 
any worthwhile information about a typical system since it does not depend 
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on the velocities, Ric does contain them and therefore can be a characteristic 
quantity for typical (averaged) systems. 

Numerical exploitation of the Ricci criterion of relative instability for the 
different models of stellar systems has shown that,  e.g., a spherical system 
with a central mass is more unstable than a homogeneous one, spherical 
systems are more instable than disk-like ones, etc [17]. Thus, a classification 
of different configurations of stellar systems by increasing degree of statistical 
properties has been obtained. 

7. C o n c l u s i o n s  

What  are the main advantages of the present treatment of stellar dynamics 
from the point of view of theory of dynamical systems? 

The f i r s t  major  gain seems to be the precise definitions and hence the 
unique meaning of the terminology and notation often used in stellar dynam- 
ics, such as relaxation, instability, chaos, etc. 

In particular, we have seen that  the term relaxation cannot necessarily be 
at tr ibuted only to processes which involve exchange of energy between parti- 
cles. The classical problem of the relaxation of an ideal gas is an illustration 
of this fact. 

Another example is the term chaos: only systems possessing at least the 
property of mixing, and not purely ergodic ones, can be called chaotic, e.g., 
such terms as ergodic chaos should be considered as having no meaning. 
Spherical stellar systems can thus be designated as chaotic systems. 

The s e c o n d  advantage is the possibility of obtaining deeper insight into 
the fundamental properties of N-body systems and the discovery of under- 
lying relationships between them. 

The relations between the negativity of the two-dimensional curvature 
determined by the Newtonian interaction potential, the exponential insta- 
bility of phase trajectories and relaxation driving effects for spherical stellar 
systems, the properties of Lie groups, and the conclusion regarding the ex- 
ponential instability of flow (but not relaxation) in the consideration of disk 
systems, are examples of this fact. 

The absence of a universal relaxation time scale indicates that  the at- 
tempts to estimate relaxation time scales which describe the observed states 
of galaxies and star clusters by using numerical simulations of 100 or 1000 
or even more particle models of N-body systems with a somehow softened 
potential cannot make much sense. In particular, the exponential growth of 
errors in gravitating N-body  systems as first found by Miller [20] cannot be 
directly related to relaxation time scales since the same effect can be seen, 
for example, in the integrable 2-body Kepler problem (for the discussion of 
N-body numerical simulations see [21,22]). 
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The t h i r d  advantage is the development of new methods and criteria 
which can be used both in analytical and especially in computer studies of 
N-body systems. 

Studies already completed indicate that the Ricci curvature method can 
be a useful tool for numerically investigating the local (in time) instability 
properties not only of stellar configurations, but also of plasma and other 
many-dimensional systems. 

Finally, this approach offers more unsolved problems, some of which are 
listed in [3], than those which are presently solvable. I think this can be 
considered as another advantage rather than as a weak point of this technique. 
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A b s t r a c t .  3?he stability problem in Hamiltonian dynamics is discussed in 
the light of Nekhoroshev's theorem. This guarantees a form of weak stabil- 
ity, namely referred to finite (rather than infinite) times. Applications are 
discussed for the restricted problem of three bodies and for the problem of 
energy equipartition in statistical mechanics. 

1. Introduction 

The problem of stability in Hamiltonian dynamical systems is of fundamen- 
tal importance, and every improvement in its mathematical  formalization 
is consequently of great interest. After the years 1954-1963 a new way of 
dealing with it was afforded by the celebrated Kolmogorov (or Kolmogorov- 
Arnold-Moser) theorem, which could guarantee stability in a certain weak 
sense, namely for a set of initial data  of large measure (while a full result 
could be obtained only for systems of two degrees of freedom). In the present 
lecture we intend to make a little propaganda for another approach, which 
usually goes under the name of Nekhoroshev [1,2], a pupil of Arnold who pub- 
lished the relevant paper in the year 1977; apparently, it occurred to Benettin, 
Gallavotti,  and the authors to be the first ones to become fully acquainted 
with such a theorem in the West [3,4]; for applications to statistical mechanics 
and to the realization of holonomic constraints, see [5,6]. In fact, it then be- 
came clear that  such a method was already known to Moser [7] and especially 
to Littlewood Is], who used it also for applications to celestial mechanics; 
moreover, the corresponding philosophy seems to go back to Boltzmann [9,10] 
and Jeans [11,12], dating to almost a century ago. Furthermore, some sim- 
ilar results are well known to people working in applied physics, such as 
plasma physics [13,14] and molecular dynamics [15,161. For what concerns the 
references, one can obviously refer to the original papers; we also like to men- 
tion three papers (see [17], [18] and [19]), where a certain effort was made to 
be pedagogical. In the present, very short, review, we shall instead just give 
some information at a crude informal level. 
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2. Stabil ity in Nekhoroshev ' s  Sense,  and an 
Appl icat ion to the Prob lem of  Three  Bodies  

Let us start  with the main point, namely the definition of stability itself, 
considering the paradigmatic case of an equilibrium point for a differential 
equation in R n. According to the usual definition, an equilibrium point is said 
to be stable if for any neighborhood U of it there exists another neighborhood 
V such that  all orbits starting in V remain in U for all times. This is certainly 
a clearcut definition, but it is questionable whether it is the interesting one. 
Two points come immediately to one's mind: (i) the problem of the stability 
basin (to have estimates on physically relevant invariant neighborhoods of 
the equilibrium) (ii) the problem of the stability time (in many applications, 
it is sufficient to be insured that initial data  close to the equilibrium give 
rise to orbits remaining in an interesting neighborhood of it for a sufficiently 
long time, independently of what will occur for larger times). For example, 
in applications to celestial mechanics, stability over a finite t ime such as the 
estimated age of the universe might be in practice sufficient. As Littlewood 
said, this is not the eternity, but a considerable slice of it. 

In fact, such two problems are strictly connected. This is well understood 
if one just  recalls the standard existence and uniqueness theorem for ordinary 
differential equations (in normal form), because it guarantees continuous de- 
pendence on initial data  (and parameters). Indeed from such a theorem there 
follows that,  given any neighborhood U of the equilibrium and a time T, there 
correspondingly exists a neighborhood V such that  all orbits starting in V 
will remain in U for all times t with Itl < T. But this is trivial, and by the 
way is true also for unstable equilibria. As a consequence, if one looks for a 
large T, then, in general, V must be ridiculously small with respect to U; 
if instead one wants U and V to be, in some sense, of the same order of 
magnitude, then T turns out to be ridiculously small. As a trivial example, 
consider the linear equation ~ = x. 

The Nekhoroshev's type approach allows instead to have much stronger 
results in many interesting cases. As a typical example, consider the case of 
an equilibrium of an analytic Hamiltonian system with n degrees of freedom, 
and assume that  the eigenvalues iwz, (l = 1 , . . . ,  n) of the linearized system 
(i) are pure imaginary (i.e., the equilibrium is elliptic), and (ii) satisfy the 
diophantine condition [k-w[ > 7[k[ - r  for all non-vanishing k E Z ' ,  and for 
some constants 7 > 0 and r > n - 1. Then one can prove (see [20]) that  
there exists a critical distance d from the equilibrium, such that for all initial 
data  with distance d < d the time required for the orbit to reach distance 2d 
increases exponentially with (1/d) 1/(r+1) . Thus, having fixed a time T, one 
gets stability regions within T which might be rather large. In addition, a 
more accurate analysis shows that the method allows somehow to build up 
explicitly a natural  domain within which stability up to very large times is 
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guaranteed. A similar result can be given also in the case of a reversible (non 
necessarily Hamiltonian) system; see [21]. 

The first application to a physically relevant system concerns the re- 
stricted problem of three bodies, and was given by Giorgilli et al. [22]; some 
improvements were then added in [23] and in [24]. One considers the La- 
grangian equilibrium point L4 of the Sun-Jupiter  system. It is known that  
such an equilibrium is linearly stable, but essentially no results do exist for 
the nonlinear system in three dimensions (although perpetual stability can 
be inferred by KAM theorem in the planar circular case). The result found is 
that  there exists a significant domain of weak stability in the sense described 
above (namely no escape is guaranteed from a domain of double size), over 
a time as large as the estimated age of the universe: precisely, the size of the 
domain is larger than 4 × 10 -5 times the distance of Jupiter from L4. This is 
still below the distance of the known asteroids, but already of a realistic order 
of magnitude. An analogous situation obtains for the Lagrangian L4 point 
of the Ear th-Moon system, where the stability region in the above sense is 
estimated to have a radius larger than 2 × 10 -4 times the distance of the 
Moon from the Lagrangian point. Particularly interesting are the figures of 
the paper [24], where the stability time is reported versus the distance from 
the Lagrangian point. Coming from the region of high distances, one sees 
the t ime to increase slowly as expected from the existence and uniqueness 
theorem, and then to rise sharply, in a qualitatively striking way, below the 
critical distance, somehow simulating a practically infinite stability time. 

3 .  T h e  I d e a  o f  t h e  P r o o f  

Avoiding to enter into the details of the proof, we shall only mention here 
the main ingredient, referring for simplicity to a Hamiltonian perturbation 
of a system of harmonic oscillators. So, one considers a Hamiltonian system 
of the form 

H(p, q, ~) -=- h(p) + of(p, q, s) , (1) 

where (p, q) are action-angle variables, and H is assumed to be an analytic 
function of all the variables; here, h(p) = ~-]j wjpj is the integrable part, f is 
the perturbation, and ~ a small parameter.  In this case lb is of order ¢, which 
corresponds to stability times of order ~-1. Assuming that  the frequencies 
are non-resonant, ordinary perturbation theory looks for canonical transfor- 
mations such that  in the new variables (P, Q) the Hamiltonian takes a form 
of the type 

H'(P, 0,, c) = h(P) + cg(P, c) + c~" f ' (P,  Q, s ) ,  (2) 

with suitable g and f ' ,  and a positive integer r (perturbative order); so one 
has that  t5 is of order ¢r, and formally this corresponds to a stability time of 
order c - r .  
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In fact this is only formal, because in general one provides estimates 
neither of the domains (in the p variables) where the transformations are 
defined, nor of the size of the new perturbation f t .  The essential point in 
Nekhoroshev's approach is a careful control of such estimates. First of all, 
the domain has to be determined in such a way that resonances due to g(P) 
should be avoided; moreover, due to the diophantine condition quoted above, 
the size of f t  turns out to grow typically as (r!) n. As a consequence of the 
latter estimate one has thus that,  at order r ,  the perturbation (or remainder) 
is of typical size (r!)n¢ r. A standard argument in the theory of asymptotic 
expansions then leads the to a choice of an optimal order ropt(~) as the one 
minimizing the remainder, and one finds ropt(¢) ~ ( l / c )  l/n, which leads to 
the es t imate /5  ..~ exp [ - (1 /c ) l /n] .  This is the way the exponential stability 
t ime comes about.  

4. Appl icat ion to the Foundat ions  of  Statistical  
Mechanics  

So the main rationale of Nekhoroshev's method is to renounce to have in- 
formation for all times (the eternity), and to ask questions only up to finite, 
very large, times (a considerable slice of the eternity). In fact such an atti- 
tude goes back to Boltzmann, who made use of it in discussing the paradox 
of reversibility and of recurrence in statistical mechanics. As is rather well 
known, Boltzmann remarked that for large systems the time required for 
practical recurrence (or in general for significant fluctuations away from sta- 
tistical equilibrium) would be much larger than the age of the universe. What  
is usually not known, instead, is that  a similar escamotage was considered by 
Boltzmann also in connection with the problem of equipartition [9,10]. 

Considering for simplicity the case of a system of (weakly perturbed) 
harmonic oscillators, the equipartition principle states that  every frequency 
would get, in the average, the same energy. In fact, this should be true only 
by considering time averages over a sufficiently long time (relaxation time); 
but  the size of the relaxation time is usually not discussed (see [25]). Any- 
how, the suggestion of Boltzmann is that  such a time would increase with 
the frequency, becoming of the order of days or centuries in some meaningful 
cases. Shortly later, Jeans suggested an exponential law. If this were true, 
in classical mechanics there would be no equipartition paradox (in the weak 
sense). And this would be very strange, because classical mechanics was al- 
ways supposed to fail just in this connection, namely exactly where quantum 
mechanics arose. So it is clear that  this is a quite relevant question. 

The problem was raised in more recent times (1954) by Fermi-Pas ta-  
Ulam [26], with their celebrated study on the one-dimensional solid (for a 
review see [27]). Izrailev and Chirikov [2s] were the first to pick up again 
the problem. Followed by J. Ford, they put forward the suggestion that  in 
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the thermodynamic  limit (number n of degrees of freedom tending to in- 
finity, with finite specific energy), equipartit ion would be recovered. On the 
basis of the numerical computat ions  of Bocchieri, Loinger and Scotti [29], it 
was suggested instead by Cercignani, Galgani and Scotti[30,31] that  equipar- 
tition could obtain only for specific energies above a critical non-vanishing 
threshold. There were a lot of numerical computations,  and a few analytical 
studies. All analytical indications seemed to be against an extrapolation of 
KAM methods to the thermodynamic  limit. We then became aware of the 
Nekhoroshev point of view, and the original proposal of Boltzmann and Jeans 
were rediscovered [32]. 

The most  delicate point for an application of Nekhoroshev's- type results 
to statistical mechanics is tha t  in Nekhoroshev's estimates one usually gets 
stability times of the order 

T,e  ( ' / ' * F  , (3) 
where w is the frequency involved, T, and w, are constants depending on 
n, while the constant a is typically of the order of 1/n; just  because of this 
est imate of the constant a, it is thus clear that  the exponential would disap- 
pear in the thermodynamic  limit. However, a first breakthrough was obtained 
when it was realized that  there exist physically interesting models of n de- 
grees of freedom for which one has indeed a = 1. The typical case is that  of 
a system which splits into two subsystems characterized by well separated 
frequencies, with the additional property that  the high frequency subsystem 
is completely resonant; the simplest model of this type is a one dimensional 
system of identical diatomic molecules, interacting through an analytic inter- 
molecular potential.  For systems of this type one can renounce to control the 
energy exchange among the single oscillators, being satisfied with a control of 
the exchange of energy between the two subsystems. In such a way one gets 
exactly a = 1. A numerical investigation on the system of diatomic molecules 
was given in ref. [33], while an analytical result was given in [5]. 

Having eliminated the worst dependence of the estimates on n for models 
of such a type, there still remains to discuss the dependence of the other 
constants T, and w, on n; the simplest available estimates give that  they 
could decrease to zero as inverse powers of n, but it is still an open problem 
whether such est imates are optimal.  

A numerical investigation was then made [34] for a modification of the 
FPU model, in which the equal masses were replaced by alternating heavy 
and light masses. Indeed, it is well known that  for such a modified model one 
has a splitting of the frequency spectrum into two well separated branches, 
called the acoustic and the optical branches, characterized by low and high 
frequencies respectively. The numerical indication was that  for such a model, 
for initial da ta  with fixed specific energy E / n ,  the constant w, is independent 
of n, while T, should decrease to zero at most  as 1 / In  n. Thus, the energy 
exchange between the two subsystems could remain small for exponentially 
large times even for macroscopic systems with n --~ 1023. 
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More recently an analytical result along these lines (control of energy ex- 
change between subsystems) was proved [35] for a rather large class of systems, 
which includes the modified FPU model. In particular, for the latter model 
one proves that  the energy exchange between the two subsystems is small 
for exponentially large times, with constants independent of n, provided the 
~otal energy E is fixed, which corresponds to vanishing specific energy E/n. 
Whether  such a result could be improved to a control of the energy exchange 
for finite specific energy is not known; we hope to be able to prove it at least 
in a statistical sense, namely for a set of initial data  of large measure. 

5 .  F i n a l  R e m a r k s  

We hope we were able to show how the applications of the weak notion of 
stability described above might be of considerable relevance. In fact, it is 
interesting to remark that  such ideas are rather well common among ap- 
plied physicists; indeed, people working in plasma physics and in the domain 
of molecular collisions are well aware of the fact that,  for example in the 
collisions of identical diatomic molecules, the energy transfer between the 
translational degrees of freedom (center of mass energy) and the vibrational 
ones decreases exponentially with the vibrational frequency. In passing, one 
can make the technical remark that  the method used by applied physicists to 
prove results of such a type is different from the one illustrated here, being 
based on some works of Landau[36] and Jeans [11,12]. Such a method (which 
we call the Jeans-Landau-Tel ler  one) relies on the analyticity properties of 
the solutions of the differential equations of the problem, and makes essential 
use of the very well known property that  the Fourier transform ](~v) of an 
analytic function f(t) decays exponentially with w. In fact, the proofs usually 
found have a heuristic character; for a rigorous discussion see [37]. 

In any case, apart  from this technical aspect, we would like to stress that  
the kind of results illustrated here, being based only on the consideration 
of simple general properties of the Hamiltonian dynamics, appear to have 
a rather general validity, and to be of interest for a large class of physical 
models. So, they should be relevant not only for applied physics, but rather 
for the general foundations of physics itself (see for example [38]). 
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Abstract.  A concise account is given here of some recent results concerning 
the dynamical properties of Hamiltonian systems with many degrees of free- 
dom. Some of the main theoretical points of this research field are also briefly 
discussed and compared with the outcomes of recent numerical simulations. 

New results, obtained with a differential geometrical approach to Hamil- 
tonian dynamics, are also presented together with a mention of their con- 
sequences for a deeper understanding of the dynamical properties of self- 
gravitating N-body  systems. 

1 .  I n t r o d u c t i o n  

Hamiltonian dynamics underlies almost all our descriptions of the physical 
world, both classical and quantum. 

There are two opposite att i tudes to cope with the description of the dy- 
namics of generic Hamiltonian systems, let us call them, just for historical 
reasons, the Statistical Mechanics approach and the Celestial Mechanics ap- 
proach. The former makes use of the "Stosszahlansatz" (molecular chaos 
hypothesis) - that  becomes the "ergodic hypothesis" in ensemble theory - in 
order to circumvent the problem of knowing the dynamical details of a huge 
amount  of particles. Whereas the latter has been developed to describe per- 
turbed but  regular motions of the celestial bodies belonging to our planetary 
system. Equilibrium Statistical Mechanics is a very powerful and well devel- 
oped theory based on the assumption that  the dynamics of generic Hamil- 
tonian systems is ergodic, this means that  static (or ensemble) averages can 
be used to predict the results of the experimental measurements of physical 
observables (an experimental apparatus performs a time average of a given 
observable). On the contrary Celestial Mechanics aims at working out the so- 
lutions of the equations of motion of the interacting bodies; this can be done 
only in an approximate way and the techniques developed to this purpose 
form the so called Classical Perturbation Theory (CPT).  
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However, there are cosmic systems made out of a very large number of 
gravitationally interacting bodies, such are globular clusters and galaxies, so 
that  C P T  may fail also in describing celestial systems. 

Typical  t ime scales of condensed mat ter  systems, those commonly de- 
scribed by equilibrium Statistical Mechanics, may range from picoseconds 
down to femtoseconds so that  equilibrium generally sets up in very short 
t imes compared with our macroscopic point of view. At variance, for the 
above mentioned stellar systems the concept of equilibrium becomes more 
fuzzy and questionable because of very large characteristic time scales, in 
this case neither CPT  nor equilibrium Statistical Mechanics may be adequate 
theoretical tools: here the central role is certainly played by the dynamics. 

By means of the word equilibrium we denote a state that  can be fully 
described by a one-parameter sufficient statistics, the temperature,  in the 
sense of mathematical  statistics [1] . 

Studying the dynamics of gravitationally interacting N-body systems is 
certainly a very difficult and challenging task. To begin with, there is nothing 
like the Debye screening, the gravitational potential is singular and even the 
numerical integration of the equations of motion is rather delicate. 

After Miller's pioneering computer simulations [2] of self-gravitating sys- 
tems, a conceptual laboratory became available to the theoretical investiga- 
tion. 

In order to get a meaningful insight of the physics underlying any observ- 
able phenomenology, the theoretical models must try to get rid of a good 
deal of details of a real system by seeking some hierarchy in the physical 
processes involved. Simplifying assumptions are therefore essential. In fact 
we do not need a computer simulation of many billions of gravitationally in- 
teracting stars to understand the dynamic properties or the morphogenetic 
mechanisms of a galaxy: this would be not only practically impossible but 
even unintelligent. 

On the other hand, theoretical progress can benefit very much of the 
use of those "toy models" that  are designed to shine some light on difficult 
problems of unknown solutions and hard to grasp even heuristically. 

In such a context it is worth reminding that  since the dawning of the 
computer  era, scientists like J. von Neumann, S. Ulam and E. Fermi realized 
how far reaching the potentialities were of the new instrument. 

With the following illuminating words S. Ulam remembered how the col- 
laboration with E. Fermi began: 

"After the war, during one of his frequent summer visits to Los Alamos, 
Fermi became interested in the development and potentialities of the elec- 
tronic computing machines. He held many discussions with me on the kind of 
future problems which could be studied through the use of such machines. We 
decided to t ry  a selection of problems for heuristic work where in the absence 
of closed analytic solutions experimental work on a computing machine would 
perhaps contribute to the understanding of properties of solutions. This could 
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be particularly fruitful for problems involving the asymptotic - long time or 
"in the large" - behaviour of nonlinear physical systems. In addition, such 
experiments on computing machines would have at least the virtue of having 
the postulates clearly stated. This is not always the case in an actual phys- 
ical object or model where all the assumptions are not perhaps explicitly 
recognized. 

Fermi expressed often the belief that future fundamental theories in 
physics may involve nonlinear operators and equations, and that it would be 
useful to a t tempt  practice in the mathematics needed for the understanding 
of nonlinear systems. The plan was then to start with the possibly simplest 
such physical model and to study the results of the calculation of its long- 
time behaviour. Then one would gradually increase the generality and the 
complexity of the problem calculated on the machine. . ,  perhaps problems of 
pure kinematics, e.g., the motion of a chain of points subject only to con- 
straints but no external forces, moving on a smooth plane convoluting and 
knotting itself indefinitely. These were to be studied preliminary to setting 
up ult imate models for motion of systems where "mixing" and "turbulence" 
would be observed. The motivation then was to observe the rates of mixing 
and "thermalization" with the hope that  the calculational results would pro- 
vide hints for a future theory. One could venture a guess that  one motive 
in the selection of problems could be traced to Fermi's early interest in the 
ergodic theory . . .  ,[3]. 

Actually, a famous numerical work by Fermi, Pasta & Ulam [3] on a chain 
of oscillators coupled by a weak anharmonicity, since then called FPU model, 
represents a milestone for nonlinear dynamics and particularly for nonlinear 
Hamiltonian systems with many degrees of freedom. 

These considerations aim at warning about the need for a tight interplay 
between all the existing analytic tools to tackle Hamiltonian dynamics and 
numerical simulations. Such an interplay has been very fruitful in the case of 
condensed mat te r  systems and is discussed in the following. At a first sight 
the subject might seem very far from the gravitational N-body problem, 
however this is a glance in a "theoretical tool-box" that  has been recently 
filled with new tools; in the final part of the present contribution it is shown 
that  these new tools are definitely interesting for the gravitational N-body 
problem. 

2 .  O u t l i n e  o f  Analytical and N u m e r i c a l  R e s u l t s  

As already reminded above, historically, Hamiltonian dynamics has received 
its strongest impulse from Celestial Mechanics. As the motions of celestial 
bodies are mainly regular, at least on our observational time scales, it is read- 
ily understood why C P T  deals with quasi-integrable systems, i.e., described 
by Hamiltonians that in action-angle coordinates read as 



Dynamics of Hamiltonian Systems with Many Degrees of Freedom 67 

IIHlll << i .  (1) 
H(/9, I) = H0(I) +I I l (O,  I ) ,  cr -- IIU011 

Within the framework of CPT,  the motions of Hamiltonian (1) are obtained 
by seeking the generating function of a canonical transformation S : (O, I) --* 
(a, J )  that  brings H to 

J) = z (J) + J) (2) 

with  IIZ II/IlU II = so tha t  the mot ions  of H&(J) can approximate 
the motions of H(O, I) up to times of the order of 1 /a  2. 

This procedure can be iterated to higher orders; at each step the mo- 
tion can be approximately integrated up to longer and longer times as 
1 / a 2 , . . .  l / a "  . . . .  Serious difficulties for CPT  are represented by the appear- 
ance of small denominators (resonances) in the Fourier development of S; 
these small denominators are responsible for the divergence of the perturba- 
t i re  series. 

Kolmogorov [4] found a superconvergent technique which can overcome 
such divergent terms, provided that  some condition is fulfilled by the reso- 
nant moduli. The development of Kolmogorov stability theorem by Arnold [5] 
and Moser [6] led to the so called KAM theorem (or theory), which states 
that  sufficiently irrational tori can survive -being only deformed- to a non- 
integrable perturbation Hi(O, I). Moreover, for 0 < cr < ~rc, the set of stable 
invariant tori is an open set, i.e., of positive Lebesgue measure. This result 
holds true in spite of Poincar~-Fermi non existence theorem [7], which states 
that  at N >_ 3 generic non integrable Hamiltonians, like in Eq. (1), cannot 
have any analytic integral of motion besides energy. Poincar~-Fermi theorem 
is invoked to corroborate the widespread point of view that generic per- 
turbed systems are always ergodic, and that  the so called ergodic problem 
at the grounds of statistical mechanics does not represent a serious problem 
- a t  least for physics. Doubts about  this point of view could be raised by 
KAM theorem, but the strong N-dependence of the KAM threshold crc, be- 
low which absolute stability of an open set of tori can subsist, prevents any 
difficulty for ergodicity already at few tenths of degrees of freedom. Typically 
it is found ~rc(N) = A e x p ( - N  2 logY)  or also Is] ~rc(N) = Bexp(-NlogN) .  
For this reason, it is clear that  KAM theorem, even if it represents a real 
breakthrough from a theoretical standpoint,  is of no practical use for large 
systems. 
A new remarkable approach to the stability problem is represented by 
Nekhoroshev theorem [9]. In this case, instead of looking for infinite time sta- 
bility of a set of invariant tori, one simply tries to estimate the stability time 
scale of a given initial condition. Denoting by I(0) such an initial condition, 
Nekhoroshev theorem states that  

[I(t) - I(0)l < Mcr a (3) 
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holds true at least up to a time t - r0 exp(cr0/a) "r, with r0 and a0 suitable 
constants. This gives a lower bound for the diffusion time of the actions when 
a perturbation is present. 

Nekhoroshev theorem has had a great heuristic and conceptual impact, 
but it has a major  difficulty originated by the strong N-dependence of the 
exponent 7 in the exponential bound for the stability time. In the original 
derivation of the theorem, it was found 7(N)  "~ 1 /N 2. Subsequent efforts [1°] 
to improve this estimate always gave 7 "~ 1/N.  This last estimate is consid- 
ered optimal for generic systems and confirmed optimal by numerical tests 
designed to make a direct verification of the analytical results. Therefore, also 
Nekhoroshev theorem is not very useful for large N systems. 

Finally, the main limitation in applying perturbation theory to generic 
large N systems is conceptual, in fact CPT  is conceived to deal with the 
regular (or almost regular) regions of phase space. But it is a fact that  the 
resonant manifolds of H0(I), defined by ~ j  kj(OHo/OIj) = 0 (kj are in- 
tegers), have a dense and connected set of intersections with the constant 
energy surface. This set of resonances is the backbone of a stochastic web 
which is generated by the action of H1(8, I). 

In general case, at N >~ 3, the presence of this connected stochastic web 
on the energy surface, the absence of analytic or smooth integrals besides 
energy (according to Poincar~-Fermi theorem) and the extreme smallness of 
the KAM threshold, justify the statement that  generic nonintegrable Hamil- 
tonian systems are ergodic, at least in the common physical sense. Therefore 
if we adopt the point of view of perturbation theory, the dynamical proper- 
ties of high dimensional systems appear rather trivial. On the contrary, if the 
stochastic web undergoes some structural change by varying the energy den- 
sity of the system, the corresponding change of the topology of phase paths 
would yield different diffusion regimes in phase space. Such a possibility has 
interesting physical consequences. For example, a fast diffusion process, due 
to strong chaos, implies fast mixing and can be related to a strong overlap- 
ping of resonances in the stochastic web. In this case diffusion takes place 
in every direction on the energy surface. At variance, a weak overlapping of 
resonances within the stochastic web, or weak chaos, makes dominant the 
diffusion along resonances. In this case the phase space paths get more and 
more tortuous, thus the mixing rate is affected and becomes extremely long 
at low energy. 

Let us illustrate in few more details how such a phenomenology actu- 
ally shows up, what kind of physics is thus involved, and how a Riemannian 
description of Hamiltonian chaos - though still in infancy - provides an ex- 
planation of numerical simulations. 

In the following we deal with the FPU H-model only. This model is 
considered a paradigmatic one because it shares with many other systems 
(Morse and Lennard-Jones chains, lattice ~4 model, coupled rotators) the 
phenomenology reported below, and in addition it has the peculiar prop- 
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erty that  several exact analytic computations can be performed only for it. 
Needless to say how important this is in order to increase the confidence in 
numerical simulation results. 

The FPU H-model is described by the Hamiltonian 

N [1 2 1 # _ q1)4] 
H -" E ~Pi Jr ~(qi+l -- ql) 2 -{- ~-(qi+l (4) 

i=1 

which, using the transformation qi (2/N)1/2 N = Ek=i Qk sin (ikTr/N), can be 
cast in the form 

N N 

 (I7 + c(k, (5) 
k = l  k l , k~ , ka=l  

where the coefficients (given for simplicity in the case of fixed boundary 
conditions) are C(k, kl, k2, k3) = ~N 03kCdklO~k2Wka ~(]g "~ k l  -~ k2 "~- k3) and 
Wk : 2 sin(~k/N). 

Equation (5) shows that the FPU model, rewritten in normal mode co- 
ordinates, represents a collection of harmonic oscillators coupled by a simple 
anharmonicity familiar in condensed matter  physics. Apart from the partic- 
ular form of the coefficients C(k, kl, k2, k3), typical of the FPU model, this 
is the functional form of a generic Hamiltonian that  describes a collection of 
interacting quasi-particles (phonons, excitons, polarons, magnons etc.). 

For practical reasons it is much more convenient to integrate the equations 
of motion that  are derived from Hamiltonian (4). The numerical integration 
algorithm must be symplectic. A symplectic algorithm performs at each time 
step a canonical transformation of variables: (p(t), q(t)) -* (p ( t+At ) ,  q ( t+  
At)) thus providing a faithful representation of an Hamiltonian flow. The 
well known leap-frog algorithm is certainly a simple but excellent example 
of an explicit symplectic algorithm that can be easily extended at any order 
and improved in the so-called "bilateral" version. Details about this point 
can be found in [11]. 

Integrating the equations of motion of the FPU model, or of the other 
mentioned models, does not make any serious problem because this kind of 
systems represents a set of particles that  interact through a nearest-neighbour 
potential with minimum (this is the main difference with the gravitational 
N-body problem). 

The numerical experiment performed by Fermi, Pasta and Ulam produced 
a striking result: the energy, initially given to one of the normal modes of a 
chain of 64 particles, was exchanged in a complicated but apparently recur- 
rent way among all the other modes; adversely to the expectations, no ten- 
dency toward equipartition of energy was observed. Thereafter people spoke 
of the "FPU problem", and two different approaches were adopted in the sake 
of an explanation of the lack of equipartition. The first a t tempt concerns the 
integrability of nonlinear PDEs. In fact a good approximation of the FPU 
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model in the continuum limit is given by a modified version of the Korteweg- 
de Vries equation where Zabusky & Kruskal [121 discovered the existence of 
solitons. The second approach tackles the problem from the opposite side, 
that  of stochasticity [13]. Here it was suggested that  some kind of threshold 
phenomenon might  exist according to the wavelength of the initially excited 
mode: a critical value of the excitation ampli tude below which the motion is 
ordered. The idea of a stochastic transition seemed in agreement with several 
numerical experiments [14] though, strictly speaking, it is not correct. 

Even if Kolmogorov's  theorem was contemporary to the FPU experiment, 
the two works were related for the first t ime by Izrailev & Chirikov several 
years later [13]. 

However KAM theorem cannot explain the existence of any threshold 
observed at rather  large per turbat ion ampli tudes in numerical experiments 
because - as it became clear much later - 6re drops down to values which are 
exceedingly small at large N.  Just  to give an idea of how small the threshold 
becomes, already at N = 100 we get the rough est imate 6rc "~ e-400! 

Subsequent numerical simulations, thanks to the increasing power of com- 
puters, pointed out better  and better  that  at low energy - even with large N - 
apparently regular motions subsist, while at high energy - above some thresh- 
old - the motions become fully chaotic and quick mixing takes place. Many 
authors [151 reported at worst only weak tendencies, if any, of this threshold 
to shrink to zero by increasing N.  

More recent and extensive numerical experiments [16,171, confirm, as ex- 
pected, tha t  the dynamics i s  always chaotic and that  we can reasonably 
consider ergodic, in the physical sense, large N systems like the FPU lattice. 
The property tha t  drastically changes when the specific energy exceeds some 
threshold value is rather the mizing rate, which in turn is related with the 
kind of chaoticity of the system (weak or strong). In other words, by repeating 
with nowadays computers  the original FPU simulations, one finds that  after 
a sufficiently long t ime equiparti t ion of energy is always attained. The lack 
of equiparti t ion in the FPU original experiment was only due to the choice of 
the energy value in the slow mixing regime. Wha t  is nowadays evident [16,17] 
- for nonlinear Hamil tonian systems with N > 3 - is that  a Strong Stochas- 
ticity Threshold (SST) exists between these two regimes of weak and strong 
chaos. 

The discovery of this threshold (SST) has clarified the origin of an ubiq- 
uitous bimodal i ty  in the dynamical  behaviour of nonlinear, nonintegrable 
I-Iamiltonian systems. Such a bimodality, observed in numerical simulations 
by varying the energy, appeared - at different epochs - as an effect of the 
mentioned stochasticity threshold, or of some equipartition threshold [18], or 
due to the slowing down of phase space diffusion as described by Nekhoro- 
shev theorem [9]. However, because of the above mentioned reasons, the only 
possibility which is left open to explain such a bimodali ty is to account for 
the existence of qualitatively different regimes of chaoticity. 
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A good definition of the SST could be given through the e-behaviour of 
any observable that  is sensitive to the difference between weak and strong 
chaos (e is the energy per degree of freedom). 

However, the best definition is provided by the crossover value e¢ of the 
scaling of the largest Lyapunov exponent, ,~1 (e). In fact, this is an unambigu- 
ous definition, directly related with the level of chaoticity, and is indepen- 
dent of ¢he choice of initial conditions [17] (also random initial conditions at 
equipartition are chosen). Because of this last property, the crossover of Al(e) 
gives an intrinsic definition of a global transitional feature of the dynamics, 
and this is why )h(e) is markedly superior to any other observable. 

Strong chaoticity in the FPU model is quantitatively described by the 
scaling law Al(e) ~ e 2/3 of the largest Lyapunov exponent. Whereas weak 
chaoticity corresponds t o  ) l l ( e  ) ~ e 2 at e < ec. The e2/3-1aw is explained by 
a random matrix approximation of the tangent dynamics as follows. Let 

rf2 l + r 2 f 2  (6) 

be the Jacobian of the discretized Hamiltonian flow derived from Eq. (4) 
with ~2ij = -02U(q)/OqiOqj and r a discretization time (for instance the 
time integration step). M is a 2N × 2N symplectic matrix which maps a 
vector ~(t) tangent to the flow into a vector ~(t + r). The largest Lyapunov 
exponent A1 is given by 

A1 = lim l l n /  
n---* oo n T  \ 

n M T ' r n  } 1 >  (7) 

The matrix elements of F2 contain terms like ( q i + l  - -  qi) 2. In the random 
matrix approximation the hypothesis of &correlation in time is made for the 
fluctuating part ~) of D, i.e., (F2ij(kr)~ij(1T)) : (~fij/V) 6kl. The average 
(.} in Eq. (7) is considered over different realizations of the random matrix 
process. The average of 7i1 is given by 

N 
1 

7 : - - - • ( 8 )  

i : 1  

The computation of Eq. (7) yields [16] A1 ,,~ 71/3. Then the average of 7(e) can 
be computed on the constant energy surface [~7] and finally yields (7)(e) ,,~ e 2, 
hence A1 ~ @/3(e) ~ e 2/3. Therefore the meaning of A1 -'~ ¢2/3 is that  the 
corresponding dynamical behaviour is strongly chaotic and can be modeled by 
an uncorrelated random walk in phase space, which also means that  diffusion 
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Fig. 1. Synopsis of the largest Lyapunov exponent AI and relaxation time rR vs. en- 
ergy density e for the FPU model defined in Eq. (4) with N = 128. A1 is represented 
by full circles. Dashed lines are references to power laws e 2 and z2/3. Open circles 
and squares represent relaxation times to equipartition of energy among normal 
modes of the energy initially concentrated in a wave-packet made with the four 
lowest modes of the chain. The crossover point of A1 (e) defines the strong stochas- 
ticity threshold e¢. Below ec the mixing time rR rapidly grows by decreasing e 

takes place in any direction on the energy surface. This  corresponds to fast 
mixing for the overwhelming majori ty  of  initial conditions. 

At • < ec, it is evident that the random matrix  approximation breaks 
down, phase space diffusion is much slower, chaoticity is definitely weaker 
and characterized by a steeper (and model  dependent) scaling law AI(e). In 
this regime, depending on the initial conditions, even very long mixing times 
can be observed. Phase space paths are now more tortuous and can even look 
regular when followed during an insufficiently long observational time. 

The  SST has some interesting consequences on the nonequilibrium be- 
haviour of  these systems: the energy dependence of  the relaxation time, 
needed to reach equipartit ion from an initial state far from it, is very sensi- 
tive to the chaoticity regime. Let us look at Fig. 1 where a synopsis is given 
of  the •-dependence of  the relaxation t ime rR and of  the largest Lyapunov 
exponent  A1 (in this case the four lowest modes  were initially excited). At 
high energy, in the domain  of  strong chaos, we observe Al(e) ~ e 2/3 and VR 
is a lmost  independent of  the energy. At low energy, in the domain of  weak 
chaos, Al(•)  ,~ •2 i.e., at any • < ec the actual value of A1 is smaller than 
that obtained by extrapolating at low energy the e 2/3 behaviour; now rR is 
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Fig. 2. FPU model. 
Largest Lyapunov 
e x p o n e n t  )kl v e r s u s  e n -  
e r g y  density e. Initial 
conditions: random at 
equipartition (circles); 
no.¢ = (30, 31, 32, 33) 
(squares); next = 
(54, 55, 56 ! 57) (trian- 
gles); ncx¢ = (3, 38, 61) 
(asterisks). Dashed 
fnes are references to 
power laws e 2/~ and e 2. 
Independently of the 
initial condition, the 
crossover in the scaling 
behaviour A1 (e) always 
occurs at the same 
value of the energy 
density. This shows the 
intrinsic character of 
the SST. N = 128 

strongly dependent on the energy and steeply increases by lowering ¢. Notice 
tha t  there is an evident relationship between TR and )q, but this is neither 
simple nor very direct. In other words, it is not  t rue  that  A~ "1 is r a ,  neither 
a simple functional relationship can be obtained, say, by dimensional argu- 
ments; the reason is tha t  by changing the initial conditions rR(e) changes 
whereas Al(e) does not (see Fig. 2). Figure 3 shows how complicate the re- 
lationship is: r a  is now reported at different energies as a function of the 
average wavenumber of the initially excited packet. It is now evident that  
above the SST the initial excitation of high frequency modes results in a 
faster equipartit ion, while below the SST the situation is reversed[ 171. It  is 
worth mentioning that ,  at  any energy, the virialization t ime is extremely fast 
in these models, and that  the relaxation t ime is also strongly dependent on 
the observable [ls]. 

This point can be of interest for the gravitational N-body  problem: it 
warns about  possible oversimplifications in the definition of "the" relaxation 
t ime and of its relation with A1. 

I t  is worth mentioning that  a similar crossover in the scaling of A1 has 
been found in Morse and Lennard-Jones lattices [2°], one-dimensional coupled 
rotators, and in a two-dimensional system of coupled rotators[21]; this last 
system is the classical counterpart  of a 2D Heisenberg X Y  model. In corre- 
spondence with the critical tempera ture  - at which the system undergoes a 
Kosterlitz-Thouless phase transition - also a transition appears between weak 
and strong chaotic behaviour. This suggests an intriguing relationship with 
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Fig. 3. FPU model. Equipartition time r~t versus mean wavenumber hex¢ of the 
initially excited packet for different values of energy density e. From top to bottom: 

= 0.059, 0.137, 0.39, 1.66, 3.9, 54.7. Each wavepacket is made out of four modes. 
Dotted lines join the lowest with the highest excited modes. These lines change 
the sign of their slopes around the SST. This fact puts in evidence that below the 
SST high frequency excitations are harder to relax than low frequency ones. The 
converse happens at e > ~c 

the dynamical counterpart of phase transitions in systems with continuous 
symmetries. 

Finally, there are also several experimental phenomena that  suggest the 
existence of measurable physical effects of the SST. Let us just quote the 
sudden increase of the width of Raman spectral lines in molecular crystals; 
this occurs at some "critical" temperature below which the lines are nar- 
row and the linewidth is rather insensitive to the temperature, and above 
which the lines become broader and the linewidth quickly increases with 
the temperature [~2]. This phenomenon seems related with a different rate of 
chaoticity in the phonon dynamics thus with a different degree of energy 
exchange among the phonons, a fact that gives, as observable counterpart, 
different line broadenings. 
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3. Riemannian Description of  Hamiltonian Chaos 

Now, the problem that  naturally arises is how to explain the origin of the 
Strong Stochasticity Threshold and how to compute, say, the crossover en- 
ergy. According to the above given arguments, one has to look for some 
non-perturbative method. The only theoretical framework dealing with the 
opposite situation of CPT, that  is with completely chaotic trajectories, is er- 
godic theory. A relevant contribution to this field was given by Krylov [23]. He 
realized that  mixing, rather than ergodicity, is the most important property 
for statistical physics (i.e., convergence of time averages to ensemble ones 
in a finite time) and that  the study of the mixing properties of a physical 
system could have taken advantage of already existing results about the sta- 
bility properties of geodesics on Riemannian manifolds of negative curvature. 
These results, associated with the names of Hopf, Hadamard, Hedlund, had 
never been exploited before in physics. 

The follow up of Krylov's ideas took place within ergodic theory, with the 
fundamental works by Sinai, Anosov and others on geodesic flows [~4]. But 
generic Hamiltonian flows, for instance like that of the FPU model, have not 
been touched by these methods. 

Taking advantage of the well known fact that the equations of motion of 
a mechanical system, according to Maupertuis' principle, are given by the 
extremals of the action integral 

A = 2T(q, ~1) dt (9) 
0 

where T is the kinetic energy, the trajectories of a Newtonian system can be 
viewed as geodesics of a Riemannian manifold. This is possible because also 
for the geodesics a variational formulation can be given (stationarity of the 
arc-length functional). 

Having set E > V(q) for q E M, E is the energy, V is the potential and 
M is configuration space, the kinetic energy metric (or Jacobi metric, g j )  is 
given by 

gij = (E - V(q)) a , i ,  (10) 

where aij is out of 2T = aij~i~ i.  
If we denote by Fjk the connection coefficients derived from the metric 

(9), the corresponding geodesics are given by 

d~ qi 
ds--r + rh(q)  dq de - o (11) 

and one easily recovers 

d2q i OV 
dt ~ -  Oq' (12) 
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i.e., Newton's equations of motion. 
As already pointed out in [25,26], there are several possibilities of rephras- 

ing Hamiltonian dynamics in geometric terms by choosing as ambient man- 
ifold: i) configuration space M equipped with the :lacobi metric g j ;  ii) con- 
figuration space t ime M × R with the structure of a Finsler space induced 
by a suitable metric gv; iii) enlarged configuration space-time M x R x 1~ 
equipped with Eisenhart metric; iv) the tangent bundle T M  of configuration 
space equipped with the Sasaki lift gs of gJ and suitable restrictions to T M E .  

Let us just mention that  to derive a Riemannian structure from Hamilton 
least action principle, after Eisenhart theorem we must consider an enlarged 
configuration space-time M × IL 2 whose local coordinates are q0 q l . . . ,  q i , . . . ,  
qW,qN+l,  with ( q l , . . . , q N )  E M, q0 E 1~ is the time coordinate and 
qN + l E IR is given by 

qN+l (t) = C~t + C2 - L(q, 6) d t ,  (13) 

where C1 and C2 are arbi trary constants. For standard tIamiltonian functions 
H = T + V(q),  in this coordinate system the arc-length of the manifold 
M × R 2 is given by 

dSZE = aijdqi dq I - 2V(q)(dq°) 2 + 2dq°dq N+I , (14) 

where aij is the kinetic energy matrix. Again the geodesics of this manifold are 
the natural motions of the given Hamiltonian system. Among the remarkable 
properties of Eisenhart metric, we mention that  it makes possible to give a 
new meaning to the widespread numerical algorithm to compute Lyapunov 
exponents; details can be found in [25]. 

The stability properties of geodesics can be studied by means of the 
Jacobi-Levi-Civita equation for the second variation of the action integral. 
This equation links the divergence of nearby geodesics to the curvature prop- 
erties of the underlying manifold through the Riemann curvature tensor R}l k 
and reads as 

V V  ~i  ~ ,dq j~ ldq  k 
ds __ ~i + ~ ) l , [ q )_~s  ¢ -~ s  = O, (15) 

where ~ is the vector field of geodesic separation and can be used to measure 
the distance between nearby geodesics; (V~/ds) is the covariant derivative 
along a geodesic. 

Now the question is: what is the relationship between instability of the 
geodesics and chaos? 

First of all remember that deterministic chaos is originated whenever the 
following two basic (topological) ingredients are somehow realised: stretching 
and folding of a given set of initial conditions; these are necessary for the 
appearance of a hyperbolic limit set[ 27]. 
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The traditional explanation of the origin of chaos in Hamiltonian systems 
is based upon the picture of homoclinic intersections. 

Homoclinic intersections, though of little practical (computational) use 
at high dimension, are responsible for the appearance of a hyperbolic invari- 
an~t set (Smale-Birkhoff theorem) deeply affecting the dynamics. Therefore 
Hamiltonian chaos too stems from the two mentioned ingredients - stretch- 
ing and folding of volumes in phase space. 

In the Riemannian description of Hamiltonian chaos, stretching is pro- 
vided by the instability of nearby geodesics, and folding by not allowing 
the distance between them to grow indefinitely, that  is by compactedness 
of the ambient manifold. Under these circumstances, the phase trajectories 
are compelled to fold themselves in a very complicated manner so that  their 
behaviour becomes practically unpredictable. 

This approach to the explanation of the origin of Hamiltonian chaos is 
alternative to the standard approach of homoclinic intersections. The geomet- 
ric description has the following great advantages: i) it is a nonperturbative 
approach, i.e., it holds true at any energy and at any degree of nonlinearity; 
ii) it makes use of the natural coordinates of a system, there is no need for 
action-angle coordinates; iii) it unifies the explanation of the origin of chaos 
with the method of measuring its strenght. 

For the majori ty of systems of physical interest the configuration space 
manifold is compact, that  is the coordinates remain bounded during their 
time evolution; in principle this is not the case of the self-gravitating N-body 
systems, however, if the characteristic time of mass evaporation out of the 
system is much longer than the dynamical instability time, then we can still 
consider that  instability originates chaos. 

The instability (stretching) of nearby geodesics is described by Eq. (15), 
whence in principle N "geometric" instability exponents could be obtained by 
averaging - along a trajectory - the eigenvalues of the matrix Q~ = R~ik~l~ k. 
However, due to the large number of independent components of the Riemann 
tensor, a practical difficulty arises. Therefore one is led to seek a more handy 
version of Eq. (15). 

The first and most natural idea is to replace the system of N evolution 
equations for ~1 . . .  ~ N  _ given by (15) - with a single scalar equation describ- 
ing the evolution of the norm of the separation vector [[~[[2. In this way some 
information will be lost but knowing the evolution of the distance between 
two nearby geodesics is sufficient to describe and measure their degree of 
instability. 

Standard algebraic manipulations [2s] of Eq. (15) yield the exact result 

ld2[[~[[2 [R idqJ kdql~ V~ s 2 
2 ds - - - - r -  + , i , , •  I1 112 - -- 0 (16) 

where #i  = ¢/11 11 are the components  of  the unit vector c o d i r e c t i o n a l  with 
{. Unless we can rewrite this equation in closed form it is useless. 
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In order to work out  a scalar equation for II~ll 2 in closed form, we must 
operate two approximations. First, we use the inequality 

_> I1 11 (17) 

to replace the last term in Eq. (16). Second, we need to replace Ri jk l~ iq j#kq  ! 
with something independent of # (or, equivalently, ~). To this purpose, we 
recognize that this quantity is just the sectional curvature K (2) associated 
with the two dimensional plane spanned by ~ and dq/ds.  Of course, such a 
curvature depends upon the particular choice of ~ and dq/ds at a given point 
of M and still requires the knowledge of the evolution of ~i (or, equivalently, 
#i). Thus, at any point of M, we need to replace K(2)(~, dq/ds)  by some local 
average. Take, for simplicity, ~ _L dq/ds.  There are at hand two possibilities. 
The first choice consists in averaging - with some uniform distribution - all 
the sectional curvatures given by the N(N - 1) mutual orientations of ~ and 
dq/ds at any point, and then replacing K(2)(~, dq/ds) by such a local mean. 
Remind that, if we denote by ~(a) and (dq/ds)(b), a, b = 1,..., N, the N 
independent choices of each vector, then it is 

K(2) (~, ~_~) 11~112 ~s  q 2 =  RbiJ kl~a) \(dqJ~ds ](b) ~a) \-dS](b)(dql~ , (18) 

and it is well known that 

1 . . . N  

E (19) 
a~b 

This means that Ti/N(N - 1) at any point of M is a measure of the average 
sectional two dimensional curvature at that point. Hence, the quantity within 
round parentheses in Eq. (16) could be approximated by 7 ~ / N ( N  - 1) .  This 
amounts to considering a local average over all the geodesics issuing from a 
given point and over all the separation vectors orthogonal to them. 

However, there is another and less drastical approximation to the original 
Eq. (16): let us consider a given geodesic issuing from any point of M, i.e., we 
keep dq/ds  fixed at that point, and let us consider all the possible sectional 
curvatures obtained by varying only the separation vector ~; in such a case 
the sum (19) is replaced by 

1 . . . N  L~N(II~II2) r i d q j c k d q ,  - dqndq, 
K ( a  2)  = - ' (20) 

a a 

which is known as the Ricci curvature KR(Cl) at a point along the direction 
dq/ds,  and R,m is the Ricci tensor. This suggests another kind of replacement 
in Eq. (16), that is KR (Cl)/N. In conclusion, we rewrite Eq. (16) as 



Dynamics of Hamiltonian Systems with Many Degrees of Freedom 79 

2 ds -------T- + ~ K R  (/t)II~l] \---~-s j = o .  (21) 

As already discussed in [25,26], it is better to use Ricci curvature instead 
of scalar curvature because the loss of information - going from Eq. (16) to 
Eq. (21) - is less serious with Ricci curvature. 

By the way, since Eq. (21) holds true independently of the choice of the 
ambient manifold and its metric, it is worth mentioning that  if one works 
with the enlarged configuration space time, equipped with Eisenhart metric, 
then scalar curvature is always identically vanishing, whereas Ricci curvature 
is not. 

We must always keep in mind that  Eq. (21) is an approximation to 
Eq. (16), on the other hand it has the advantage of describing in closed form 
the evolution of the norm of the separation vector ~. By setting ~ = n~n 2, it 
can be cast in the form 

d2¢ l d W d ~  1 ( d ~ )  2 

dt 2 W dt dt + 2 X ¢ - ~ - ~  ~-~ = 0  (22) 
1 dq n dq m 

X = --~Rn,~ dt dt 

Details about this equation can be found in [25]. The following results are 
found: a) X < 0 is a sufficient condition to get an exponential growth of 
((t),  thus to make chaos; b) X > 0 is a necessary condition for ~(t) to remain 
bounded, thus for regular behaviour. The latter item deserves particular at- 
tention, in fact, X > 0 is not sufficient to ensure the dynamical stability of 
nearby trajectories, on the contrary a subtle mechanism is generally at work 
to make chaos also when X > 0: parametric resonance. In other words, the 
bumpiness of the manifold (M, g~r) can be an effective source of exponential 
instability of nearby geodesics - thus of chaos - even in presence of positive 
scalar or Ricci curvature. This can be studied through the following linear 
second order equation with non constant coefficients [25] 

d2X 17¢'(t) dX 1 . 
at  2 W(t)  d~ + -~KR (it(t))X = 0,  (23) 

which is derived from Eq. (22). An exponential growth of X(t)  implies an 
exponential growth of ((t) and a bounded evolution of X(t)  implies a bounded 
evolution of ~(t). 

We have insisted about the reduction of the exact Eq. (15) to the approx- 
imate Eq. (22), or equivalently Eq. (23), because according to a widespread 
commonplace, borrowed from ergodic theory (but forgetting that  here all the 
sectional curvatures must be negative), chaos should be related with negative 
scalar curvature. But things are not so simple! Let us show why. 

Using Eisenhart metric we find 
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1 K R  (¢1) : ~----AV(q) 

where V(q) is the potential 
Euclidean Laplacian. 

Using Jacobi metric we find 

(24) 

function of a standard Hamiltonian and A is the 

' A V  4 -  N (VV)2] ~ikr~ic~ k 

N - 2 a2V (t~(lk + 3 (N - 2) OV OV ( ~ k  (25) 
+ 2 ( E -  V) OqiOq -----~ 4--(E=-V-) ~ Oq' Oq k 

where V is the Euclidean gradient; this can be rewritten as 

1 AV (VV) 2 3 ( N - 2 ) ( d V ~  2 
-~KR(i t)= ~ +  N ( E _ V )  + 4N(E V)2 \ (26) 

+ V) 

Now, for convex confining potentials AV > 0, as is the case of the FPU 
model. For the Lennard-Jones potential, and in general for those potentials 
with an inflection point, it is possible to find AV < 0, but this usually 
happens - say - in the gaseous phase. In condensed matter systems the 
condition AV < 0 is rather exceptional, hence Ricci curvature is always, 
or almost always, positive in the case of Eisenhart metric, and is positive 
in the overwhelming majority of points along a geodesic of Jacobi metric. 
This assertion is based on the results of numerical simulations. For instance, 
for the already mentioned Hamiltonian models of physical interest, it is an 
experimental fact that  negative Ricci curvature is rarely encountered along 
a trajectory originated by generic random initial conditions. By inspection 
of Eq. (26) it is immediately realized that  negative contributions can be 
given by the term containing the Laplacian of V and by the last term. When 
the Laplacian is alway positive (FPU model, lattice 94), or when it is almost 
always positive, then only the second time derivative of the potential can give 
some negative contribution, but this is a rare event; moreover, at fixed energy 
density, the number of times that  a negative value of the Ricci curvature is 
encountered - in a given time lapse - is an inverse function of N [25,2~]. 

In other words, in the framework of Eq. (21) the dominating source of 
chaos in Hamiltonian flows of physical interest is parametric resonance due 
to the curvature fluctuations of the underlying manifold. Loosely speaking 
we can affirm that  the bumpiness of the ambient manifold appears as the 
relevant geometric property at the origin of chaos rather than some negative 
curvature property. 

In particular, to give a measure of the bumpiness of the manifold, we can 
compute its average Ricci curvature constraining the computation on the 
constant energy surface 27E as follows 



Dynamics of Hamiltonian Systems with Many Degrees of Freedom 81 

( k R ) £ ~  ' = J'-~E1/z ' d~rE k R  
E 

(27) 

where 

oE= £ dcrE= i (H(q,p)-E)dqdp 
E 

and 

£ d .kR= fkR(q) (ss(q,p)-E) dqdp, 
E 

where kR = K R I N .  
Using Eisenhart metric on M × R 2, the mean Ricci curvature kR for the 

FPU-/~ model is given by 

N 
6it 

kR ---- 2 -I- -~- ~ (qi+l -- qi) 2 • (28) 
i=1  

Notice that  here kR is always posilive, hence parametric instability is the only 
mechanism to make chaos in FPU, at least in M x ]R 2. 

In this case, according to Eq. (27) we can compute analytically the average 
Ricci curvature of (M x l~ 2, gE) in parametric form [26] 

3 / ~ - 3 / 2 ( ~ )  
(kR)(O) = 2 -{- 0 D-1]2(0) 

<kR)(e) 1 [3 1 /9-3/2(0)] 
e(o) = ~ ~ + 0 D_,/2(e)/ 

(29) 

where the Dv are parabolic cylinder functions. This results is reported here 
because it provides a good encouragement to pursue the Riemannian de- 
scription of chaos, in fact notice that  in the harmonic limit # = 0 we find 
(kR}(e) = 2. The same result is found for the Woda lattice (a nonlinear in- 
tegrable model), thus suggesting that  (kR)(e) = const, may be a sufficient 
condition for integrability. Moreover (kR)(e) in Eq. (29) is computed in the 
thermodynamic limit (N  --* c¢) and clearly marks the SST that has been dis- 
cussed in the preceding Section. Let us look at Fig. 4 where the function (29) 
is plotted (solid line) for the case p -= 0.1 and compared with time averages 
kR 

- fo 
kR = 1 ~ kR(q(t))dt, 

T 

computed along numerical trajectories obtained at different e and at N ---- 128, 
512. Not only the agreement is strikingly good, but it shows two asymptotic 
behaviours: at low e we observe a weak deviation of (kR)(e) from constancy 
- which can be naturally interpreted as a mark of weak chaos -, whereas at 
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Fig. 4. FPU model. The average Ricci curvature (solid fine) of the enlarged con- 
figuration space time equipped with Eisenha:t metric is computed on the constant 
energy surface -~E and plotted as a function of the energy density e [Eq. (30)]. The 
same quantity is numerically computed along trajectories obtained with random 
initial conditions at N = 128 (circles) and at N = 512 (triangles). The horizontal 
fine, (kR) = 2, refers to a collection of harmonic oscillators (# = limit). The SST is 
dearly marked 

high ¢ we observe a faster increase of (kR)(e) which is naturally interpreted 
as a mark  of strong chaos. The crossover is here in excellent agreement with 
tha t  observed in the scaling of ~l(e). 

Notice that ,  at  any given ¢, it is the knowledge of d (ka ) /de  that  indi- 
cates whether chaos is weak or strong; this is a first simple step in finding 
geometric quantities free of problems when N is changed. It  is also possible 
to make further improvements  of the approximations that  bring Eq. (16) to 
Eq. (21). It  would take too much place here even to give a flavour of how 
such improvement  can be done, anyway it is now possible to give a reliable 
measure of the strenght of chaos by purely geometric quantities and so to 
reproduce analytically[ 3°1 the numerical result ~l(e) obtained for the FPU 
model and reported in Fig. 2. 

Finally, we want to mention that  the arguments  discussed in this Section 
fit in a consistent scenario based on the comparison among analytic and 
numeric results; this is just  the infancy of this approach, at least with the 
aims of theoretical physics rather  than of mathematics .  
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Having elucidated some simple but  basic points with the more friendly 
models of condensed mat ter  physics, we can conclude this contribution with 
a glance at the gravitational N-body models. 

There are pioneering papers [31,32] concerning a Riemannian approach to 
the description of the mixing properties of the gravitational N-body systems, 
which have the great merit of having resumed the line of thought opened by 
Krylov half a century ago and almost forgotten by physics. However, the 
problems raised above about the delicate passage from Eq. (16) to Eq. (21) 
still apply to the self-gravitating N-bodies; with the aid of computer simu- 
lations one finds here again [29] that for random and almost virialized initial 
conditions the I~icci curvature of M is always positive and that  parametric 
instability is the actual mechanism that  makes chaotic the gravitational sys- 
tems too. Thus we cannot properly use neither the language nor the results 
of rigorous ergodic theory. Moreover a reliable estimate - based on geometric 
quantities - of the dynamical instability time scale requires those refinements 
that  have been developed in [30]. It is perhaps worth keeping in mind also 
that  if the phase space of the gravitational systems is not like that  of an 
Anosov flow, but has - loosely speaking - a "more complex" structure, then 
it might happen, as we have seen for the FPU model, that the dynamical 
instability time scale and whatever relaxation time scale one may define are 
probably related in a very complicate and subtle manner. 
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A b s t r a c t .  The properties of the billiard vary with the energy E of the 
bouncing ball. These are explored through the surface of section. The billiard 
is almost integrable for very small or very large values of E.  It looks ergodic 
in a range of values of E.  The main families of periodic orbits are shown. 

1 .  I n t r o d u c t i o n  

Let 12 be an open region of the horizontal plane ~2 whose boundary is a 
strictly convex oriented closed curve 012 of class C k, k > 2. A billiard in 12 is 
the dynamical system defined by the free motion of a particle in the interior 
of this enclosure with specular bounces on the boundary. It is a Hamiltonian 
system with two degrees of freedom. 

O 

O 

Fig. 1. (a) The horizontal billiard. (b) The circular billiard with gravity 

A convenient way to explore the properties of a billiard is through the 
surface of section. We look at the successive bounces on the boundary. Let r/ 
be the curvilinear abscissa, measured along 012 from the point of impact to 
an arbitrarily chosen origin O, and 8 the oriented angle measured from the 
normal to 012 at the point of impact to the incident trajectory as in Fig. la.  
We assume that  012 has unit length. We take as coordinates in the surface 
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of section ~/and S = sint~. I t  is clear that  0 _< 0 <- 1 and ISI ~ 1. The surface 
of section is then identified with the rectangle 

H={(r/,S) E~2 0_<7/_<1, -1<S<1}. (1) 

The mot ion in the billiard is described by a map  T : / / - - ~  H of the surface 
of section onto itself tha t  preserves the Lebesgue measure dr/ds. 

A billiard is said to be integrable if the surface of section is filled with 
invariant curves. Only two billiards are known to be integrable: the one inside 
a circle, for which the invariant curves are the lines S = const., or inside an 
ellipse. A billiard is said to be ergodic if no invariant curves exist. The usual 
situation is that  of a coexistence of regions with invariant curves and regions 
without such curves. Douady (1982) has shown that  for k > 6 there is a set 
of invariant curves of positive measure close to S = 1 or to S = - 1 .  He also 
conjectured that  this is true for k > 4. This  means that  such billiards are not 
ergodic. If  k = 1 one cannot rule out the existence of ergodic billiards as has 
been shown by Hayli & Dumont  (1986) on the basis of numerical evidence. 
The same seems true if k = 2. It  is clear however that  no certainty could 
be at ta ined by this approach, as can be seen by comparing Robnik (1983) & 
Hayli et al. (1987). 

2.  T h e  C i r c u l a r  B i l l i a r d  o n  a n  I n c l i n e d  T a b l e  

The billiard we study now is circular and lies on a table which is plane 
but not horizontal. In other words we shall explore the circular billiard in 
the presence of gravity. Other billiards in a gravitational field have already 
been explored. See for example the billiard in a wedge studied by Lehtihet 
& Miller (1986). The t rajectory of the particle between two elastic bounces 
is an arc of parabola  (Fig. lb) .  By contrast  with the horizontal billiard the 
velocity of the particle plays now a role. The dynamical  system depends on 
several parameters .  These are the radius of the circle, the angle of inclination 
of the table, the mass and the energy of the particle. It  is easily seen that  
one parameter  is enough to describe the system. We take the radius of the 
circle, the acceleration of gravity and the mass of the particle equal to one. 
Accordingly we shall vary only the energy of the particle. We give in the 
following some prel iminary results of the numerical exploration. Theoretical 
results will be given elsewhere. 

2.1 The  Surface o f  Sect ion 

Figure 2 summarizes the main  features in the surface of section for E ranging 
from 0 to c¢. The origin is the lowest point in the billiard and T/is reckoned 
from - 0 . 5  to 0.5. I t  is clear that  when E < 2 the surface of section is a rect- 
angle smaller than H.  In this case only the relevant rectangle is represented. 
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- . 0 5 1  B . 0 5 1  - . 1 5 7  i 1 . 157  - .  1 7 6  ~ . 19¢~ 
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(g) E=2.15 ( h )  E=2.25 (i) E=6.0 

Fig. 2. The surface of section for different values of the energy E 

For small values of E the surface of section seems to be filled with invariant 
curves. Fig. 2a is for E = 0.05; the billiard looks integrable. In fact one could 
probably find a very thin ergodic strip outside the curves. The general aspect 
changes drastically for E > 0.25. Fig. 2b-e are for E = 0.45 and E = 0.55. The 
surface of section has the familiar aspect met  for horizontal billiards. Islands 
develop around invariant points corresponding to stable periodic orbits. The 
ergodic region has greater extension with increasing E.  The billiard looks 
ergodic f rom about  E = 1.15 to E slightly greater than 2. However careful 
examinat ion shows that  this is not quite true. Very small islands are observed 
for E = 1.2, beyond the classical doubling cascades, as has been noticed by 
MacKay (1982) in other circumstances. We think that  the billiard is probably 
ergodic for E ranging from 1.75 to about  2. Let us point out that  for E = 1.75 
there is a t ra jectory start ing from q = 0 which is osculating to the boundary. 
Islands reappear  for E slightly greater than 2. The size of the region with 
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invariant curves increases when E becomes larger. Although the billiard is 
integrable only for E ---- c~ we observe on Fig. 2i that  it looks integrable 
already for E = 6. 

2.2 T h e  Main  Families  o f  Stable  Per iod ic  O r b i t s  

These are shown in Fig. 3. Orbits of family I are in Fig. 3a-d. For energies 
smaller than  0.5 there is a one-periodic rectilinear stable orbit starting from 

= 0 normal  to the billiard. I t  corresponds to the invariant point at the 
centre of Fig. 2a. For E = 0.5 we observe a bifurcation. A stable symmetr ic  
two-periodic parabolic orbit as in Fig. 3b appears. An orbit of this type 
corresponds to the two invariant points in the central par t  of Fig. 2c. For E = 
1 this orbit  splits into two identical orbits described in opposite directions. 
This is shown in Fig. 3c. These orbits correspond to the invariant points inside 
the islands in Fig. 2e. Orbits of this type remain stable until E ~_ 1.17678. I t  
is remarkable tha t  the point of impact  A does not vary for 1 < E < 1.17678; 
namely one has ~(A) = 1/8. For E ~ 1.17678 these orbits become unstable 
and gives by bifurcation a 4-periodic orbit of the type shown in Fig. 3d. 
This orbit  in turn becomes unstable for E ~_ 1.19882 and the cascade of 
bifurcations continues as in Hayli et al. (1987). 

Orbits of family II  are shown in Fig. 3e-h. They do not exist for E < 0.25. 
Orbits of the type in Fig. 3e are 4-periodic and symmetric;  they start  normal  
to the billiard. Such an orbit corresponds to the invariant points inside the 
four islands of Fig. 2b. For E = 0.75 it is replaced by two identical symmetric  
orbits described in opposite directions like the one shown in Fig. 3f. Orbits 
of this type remain stable until E - 0.84003. Again it is remarkable that  
the point of impact  B remains the same, namely one has ~?(B) = 1/6. For 
E -~ 0.84003 this orbit  becomes unstable and gives by bifurcation an 8- 
periodic symmetr ic  orbit  of the type shown in Fig. 3g. For E ~_ 0.84390 the 
8-periodic orbit becomes asymmetr ic  as in Fig. 3h. 

Then for E _~ 0.84963 this orbit  becomes unstable and gives through 
bifurcation a 16-periodic orbit (not shown). 

Orbits of family I I I  are shown in Fig. 3i-k. They appear  for E _~ 2.0099 
as soon as the billiard has ceased to look ergodic. The first type is 4-periodic 
and asymmetr ic .  It  becomes symmetr ic  for E _~ 2.03078. For E = 2.25 we 
observe an inverse bifurcation and the 2-periodic orbit along the diameter 
becomes stable. It  remains so for all greater values of E.  

One orbit of family IV is shown in Fig. 31. These 3-periodic orbits have a 
parabolic part  and a rectilinear part .  The type in Fig. 31 is associated with 
the invariant points inside the three small islands like those in Fig. 2b. A 
bifurcation of this type of orbit has been observed with doubling period. 
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Fig. 3. The main families of stable periodic orbits 

3 .  C o n c l u s i o n  

The billiard inside an inclined circle might be considered in some way as 
a perturbation of the horizontal one. It is almost integrable for smM1 or 
large energies of the bouncing ball. It looks ergodic for some intermediate 
energies. We think that  ergodicity has to do with the occurrence of osculating 
trajectories to the boundary. Several families of relatively simple periodic 
orbits have been found. Only few of them were presented here. 

More work on the subject is in progress. 
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A b s t r a c t .  When considering the ergodic problem for gravitating systems 
of N point masses we have to take into account the circumstance that for 
large enough N (i.e. for galaxies of the most usual types) the systems are 
practically collisionless for time scales not exceeding the Hubble time. So it 
is necessary to follow phase trajectories not only in the 6N-D phase space 
but in the 6-D phase space. Studying the 6N-D space will give no new in- 
formation for completely collisionless systems. We suggest a classification of 
various kinds of mixing in collisionless gravitating systems based mainly on 
degree of non-stationarity of the smoothed gravitational field (Antonov, Nu- 
ritdinov, & Ossipkov 1973). We distinguish a compulsive mixing in violently 
non-stationary systems, a quasi-diffusion mixing in weakly non-stationary 
systems, a divergent mixing which is connected with an exponential diver- 
gence of initially close trajectories for steady-state non-integrable systems, 
and a circulation mixing that will be in integrable systems in the case of 
dependence of circulation frequencies on values of isolating integrals of mo- 
tion. The general property of collisionless mixings of any kind is the increase 
of the quasi-entropy, i.e., an integral of any convex function of the coarse- 
grained distribution function (Antonov 1963; Antonov et al. 1973; Tremaine 
et al. 1980). So we can show that some evolutionary ways are impossible for 
isolated collisionless systems. For example spherical systems cannot evolve 
along the sequence of polytropic indices (Antonov 1990). Any mixing cannot 
increase the maximM value of the distribution function. 
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Abstract.  N-particle systems of 1-D globally coupled maps are numerically 
investigated to show the formation of spatial order in chaotic dynamics of 
Hamiltonian systems. The system itinerates between ordered and disordered 
states by its deterministic dynamics. Phase space structure and existence 
of long-time tail reveals that the ordered state is supported by hierarchical 
motion around ruins of regular orbits (KAM tori and islands). 

1. I n t r o d u c t i o n  

Stellar systems show interesting behaviours in that, while they are governed 
by conservative dynamics without dissipation, they avoid thermalisation and 
form spatial structures, such as elliptical galaxies and globular clusters. The 
fundamental interaction between each star is completely known, but we have 
not yet understood the origin of the entire structure. For example, it is diffi- 
cult to understand the triaxial shapes of elliptical galaxies by superposition 
of regular orbits, since they are born and grown through complicated inter- 
actions among stars. Thus we need a new theory to explain spatial order. 

Chaotic dynamical systems shed a new light to structure formation. Var- 
ious spatial structures appear in various physical systems. Some of them are 
familiar to us, such as crystals, linear waves, solitons. They are regular, pe- 
riodic or stationary structures. There are many other dynamic patterns such 
as in turbulence, vortices, liquids, microclusters. To describe non-stationary 
and dynamical order, we need power of chaos. 

Long-time behaviour of chaotic dynamics in conservative systems are usu- 
ally considered to be of two classes. One is thermal equilibrium, which is spa- 
tially uniform (translational symmetry), and shows exponential relaxation to 
the equilibrium. The other is 1/f-type fluctuations, or long-time tail, mostly 
found in small systems like the standard map. 

There is another kind of conservative chaotic systems, which forms non- 
uniform spatial structure. Glassy systems [5], hydrogen bond network in liquid 
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water [6], microclusters [7], and self-gravitating systems. In this paper we de- 
scribe, with the use of a globally coupled map system, a simple model of such 
a class of dynamical systems which develops spatial structure with Hamilto- 
nian dynamics. 

2 .  M o d e l  

Our model is a coupled map lattice with symplectic condition [1]. Coupled 
map lattices are defined on discrete time and used in various fields for its 
numerical efficiency. In particular they are suitable for numerical investigation 
of phenomena in which long-time behaviour is important.  

In our model we have N particles on the 1-dimensional unit circle (hence 
our space is compact).  The state of each particle i is defined by a pair of 
real number (xi,p~). x~ is its phase (position) with 0 _< x~ < 1 and p~ is its 
conjugate momentum. The temporal  evolution rule is defined as (xi,pi) H 
(x~,M),  i = 1, 2 , . . ,  N:  

N 

K ~ sin 2~(x~ - x i ) ,  
P~ = P' + 2~  N ¢ - ; - ~ -  1 g > 0 (1) 

j----1 

• ~ = z i  + p~ , 

Since K > 0, the interaction term ( K / 2 r v / ~ - - T )  sin 27r(zj - x,) between 
two particles i and j is attractive. The interaction is long range and tends to 
zero at close 2-body encounters. 

N The model Eq. (1) satisfies the symplectic condition: ~ i=1  dxi A dpi =- 
EN=I dx~ Adp[, so that  the model can be regarded as a Poincar~ mapping for 
a Hamiltonian system with N + 1 degrees of freedom. Another interpretation 
of our model is a use of a "kicked" Hamiltonian, as in the standard mapping. 
Note that  the total  energy is not a constant of motion. The entire phase 
space of the model corresponds to an energy surface of an energy conserving 

N system, The total  momentum ~,1=1PJ is a constant of motion. 

3. C l u s t e r e d  S t a t e  o f  P a r t i c l e s  

Figures 1 and 2 are typical temporal  evolution of the model. In Fig. 1 parti- 
cles, initially spread on the unit circle, gradually assemble and form a cluster. 
These figures are taken for the same parameter K = 0.1 and their only dif- 
ferences are the initial conditions. For clustered motion the initial momenta 
are small (say [Pi[ < 0.2) and for non-clustered motion the initial momenta 
are large. 
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Fig. 2. Non-clustered motion. 
N =  12, K = 0.1. 
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Fig. 3. Lyapunov spectra of clustered 
and uniform random state 

4. Lyapunov spectra 

Figure 3 shows the Lyapunov spectra of the model Eq. (1) for ordered (clus- 
tered) and disordered (non-clustered) states. Each spectrum is calculated by 
averaging over 100 orbits for each states. From the figure we see that  elus- 
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Fig. 5. Lifetime distribution 
of non-clustered state: semi- 
log 

tered mot ion is chaotic, and we have that  two different chaotic seas coexist in 
phase space. The existence of different chaotic seas implies that  these seas are 
topologically connected, since KAM tori (if any), which is only N dimensional 
manifold, cannot divide the 2N-dimensional phase space into disconnected 
parts  if N > 1. And we expect that  these chaotic seas are dynamically con- 
nected. Indeed, clusters once formed dissolve into non-clustered state, and 
vice versa. 

This kind of successive transition among various states by internal dy- 
namics is called "chaotic itinerancy" and is at tract ing attention in nonlinear 
optics, neural systems, etc.[ 4] 

Figures 4 and 5 represent the lifetime distribution of clustered and non- 
clustered states taken from a single t ime series with N = 4, K = 0.2. The 
distributions are fitted as 

{ t  -~ for clustered state, 
P(t )  oc e x p ( - a t )  for non-clustered state. (2) 

An exponential  distribution in non-clustered state implies that  the temporal  
correlation is negligible and the system must find entrances to the clustered 
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state "by chance". A power law distribution in clustered state means that  
there is no typical t ime scale in the ordered state. It  is natural  to interpret 
this power law as a result of a hierarchical phase space structure [1] . 

5. S u m m a r y  and Discuss ion  

We have shown that  Hamil tonian systems can form spatial structures with the 
use of chaotic dynamics.  The structure is deeply connected with a hierarchical 
structure of phase space. Combined with other studies [1], we give a summary  
in the following table: 

Table 1. Properties of two chaotic states. Summary. 

state clustered non-clustered 

real space structure cluster of particles none 
phase space structure ruins of KAM tori, islands none 
temporal correlation long (power law) short (exponential) 
resident time distribution power exponential 

Although our model is not directly connected to astrophysical objects, 
we think it is conceptually important ,  since it gives a concrete example of 
formation of non-symmetr ic  order with chaotic dynamics, which is the case 
of elliptical galaxies [2]. More studies are needed from various aspects. Ther- 
modynamica l  approach to this model is successfully described in [3]. Chaos 
is not just a mess, it is a rich source of various active orders. 
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A b s t r a c t .  Elliptical galaxies seem to have two inconsistent characters in 
their dynamical structures: triaxial velocity dispersions of the stars suggest 
that  the elliptical galaxies consist of regular stellar orbits, whereas nonlin- 
ear interaction in self-gravitating many-body systems makes the elliptical 
galaxies chaotic. A new type of chaos, "stable chaos", in which orbits do not 
change significantly although they have orbital instability (positive Lyapunov 
exponent), is expected to give the key to clarify the dynamical structure of el- 
liptical galaxies. As a first step, we examine whether the stable chaos appears 
or not in one-dimensional self-gravitating mass sheet systems. 

1. I n t r o d u c t i o n  

Elliptical galaxies are considered to be collisionless self-gravitating many- 
body systems because their two-body relaxation time is much longer than 
the age of the universe. And they are also considered to stay today at the 
quasi-equilibrium state because of the universality of their density profiles 
and of their morphologies. However we do not understand the relaxation 
mechanism and the dynamical structures in elliptical galaxies. 

One may consider the dynamical structure of elliptical galaxies in equi- 
librium as follows: the orbits of most of the stars are regular, that is, the one- 
body distribution function has three isolating integrals. This is because some 
observations suggest that  many elliptical galaxies are triaxial ellipsoids and 
their shape might be supported by the anisotropy of the velocity dispersion 
(Davies et al. 1983). If the system is chaotic and so the one-body distribution 
function depends on only the total energy E, then the velocity dispersion in 
the system is isotropic. Thus the observed (triaxial) anisotropic velocity dis- 
persions suggest the existence of three isolating integrals and hence of regular 
systems. 

On the other hand, it is natural to think that  almost all orbits in many- 
body self-gravitating systems are chaotic, since the interaction between each 
star is nonlinear. Moreover elliptical galaxies are considered to approach an 
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equilibrium state from their initial state by a violent change of the mean 
potential which is associated with the chaotic stellar motions. Thus it is dif- 
ficult to expect that  most of the chaotic orbits in galaxies turn to the regular 
ones through complicated interactions of nonlinear self-gravity, though the 
present equilibrium states are thought to consist of regular orbits as men- 
tioned above. Then how can we combine these two opposite characters of 
dynamical structures in elliptical galaxies; those are, regular orbits which 
support the anisotropic velocity dispersions, and chaotic orbits which might 
be expected in many-body self-gravitating systems and result in the violent 
relaxation? What  is the dynamical structures of today's elliptical galaxies? 

Recently, a new type of chaos besides the familiar ergodic chaos has been 
found in some Hamiltonian systems (Konishi & Kaneko 1992). They showed 
that  there can exist several different chaotic seas besides the equilibrium 
state. The chaotic seas are topologically connected but it takes time to go 
around the whole phase space, and such systems appear to lack ergodicity 
if one observes them within a limited t ime scale. Then one can observe that  
the system is chaotic and at the same time it holds a non-isotropie shape. 
This type of chaos is called "stable chaos". 

One of the mechanisms causing stable chaos is that  the orbit stays very 
near the KAM torus for a long time. We expect that  some self-gravitating 
many-body systems may consist of such stable chaotic orbits. Then, though 
each orbit itself is chaotic, the system might appear approximately to have 
isolating integrals because each orbit goes around near a torus. We expect 
that  the stable chaos may solve the problem of the inconsistency of the two 
opposite characters of dynamical structures in elliptical galaxies. 

The purpose in this paper is that  we examine whether the stable chaos 
appears really in many-body self-gravitating systems or not. 

2. S t a b l e  C h a o s  

We will briefly comment on the stable chaos, which is a key concept to un- 
derstand dynamical characters of elliptical galaxies. 

We generally understand temporal evolution of systems in terms of dy- 
namical system theory and ergodic theory, where properties are usually de- 
fined for infinite time (e.g., ergodic property, Lyapunov numbers, and so on). 
On the other hand, when we are interested in properties of the systems within 
finite time (e.g., shorter than the age of the universe), we need new concepts 
in addition to ordinary dynamical system theory. 

One example of such a concept is "stagnant motion",  which is found for 
motion around KAM tori in generic Hamiltonian systems. The stagnant layer 
is defined to be the transit region between the KAM torus and the chaotic sea 
(Aizawa et al. 1989). In this layer, it is found that  the orbits go around the 
KAM torus for a very long time. We call this motion the stagnant motion. 
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When stagnant motion exists, the system shows chaotic motion (positive 
Lyapunov exponent) and at the same time the orbit itself does not change 
significantly since it is stuck to a KAM toms. Milani &= Nobili (1992) found 
this kind of chaos in the motions of planets and call this chaos "stable chaos". 
On the other hand, the familiar chaos which is already well known is called 
"ergodic chaos" because the physical quantities measured as time averages 
are roughly equal to averages over the phase space. 

The orbits in the stable chaos will move to the ergodic chaos region and 
they will return back to the stagnant layer. The size of the KAM torus is 
scale-invariant, that  is, the distribution of the KAM torus is fractal. This fact 
results in that  the distribution of the pausing time T, which is the staying 
time at the state of the stable chaos, obeys the power law P(T) oc T -c'. Here 
P(T) is the distribution of the pausing time T and a is a constant. This means 
that  there is no characteristic time scale for the transition from the stable 
chaos to the ergodic chaos. On the other hand, the pausing time distribution 
for the ergodic chaos obeys the exponential form P(T) oc exp(-/~T).  Here 
/~ is a constant. From the above facts, we can find that  the time-dependent 
Lyapunov number, which is defined by 

1 
A(t)--  ~- log ll~x(t)ll, (1) 

changes as t ime goes if the transition between stable and ergodic chaos occurs 
in the system. Here bx(t) is the linear deviation of an orbit at the time t. 

3. M a s s  S h e e t  M o d e l s  

Next we will examine whether the stable chaos really appears in self- 
gravitating systems. As a first step, we analyse the one-dimensional system, 
in which infinite mass sheets move along only the x-axis (Sakagami & Gouda 
1991). The Hamiltonian in this system is given as follows: 

N 
m 

s = y + 2 am I x , -  x l, (2) 
i = 1  i>j 

where m, xi and vi are the mass per unit area, the location and velocity of 
the ith sheet, respectively. Of course, this kind of one-dimensional model is 
far from reality. However we can pursue the evolution of the systems with 
remarkably high precision. Indeed, the motion of each sheet between encoun- 
ters with other sheets has a uniform acceleration. Thus we can pursue the 
evolution of the systems with high accuracy by joining the analytic solutions 
at the moments  when an encounter takes place. 

As for the initial conditions, we consider two cases. One is a random 
distribution in phase space and the other is that all sheets have the same 
energy. We considered the cases for the total  number of mass sheets N = 4 
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to 50. For these initial conditions, it is well known that  a core-halo structure 
appears and the distribution function at the quasi-equilibrium state does not 
correspond to the Lynden-Bell distribution (Yamashiro et al. 1992). 

4. N u m e r i c a l  R e s u l t s  

We will briefly summarise our numerical results for the time-dependent Lya- 
punov numbers in the mass sheet models. The results are almost the same for 
the both initial conditions. As for the larger time-dependent Lyapunov num- 
bers, they approach the constant value rather monotonously after an enough 
long time. The smallest time-dependent Lyapunov number and the next to 
the smallest one correspond to the perturbations with respect to the total 
energy and the total  momentum conservation, respectively. For these pertur- 
bations, the time-dependent Lyapunov numbers are zero and then we found 
numerically the time-dependent Lyapunov numbers evolve proportionally to 
the inverse of the time as theoretically expected (Goldhirsch et al. 1987). 
So we can conclude that  we can get the time-dependent Lyapunov spectrum 
numerically with high accuracy after enough long time. 

On the other hand, as for the smaller time-dependent Lyapunov num- 
bers, we found that  they do not decrease proportionally to the inverse of the 
time, but they change by an order of magnitude and do not stably approach 
constant values. 

5. D i s c u s s i o n  

We found that  the smaller time-dependent Lyapunov numbers change even 
after enough long time in the mass sheet models. This is one of the characters 
which are expected in the stable chaos. If we find that  the time scale of tran- 
sition from the stable to the ergodic chaos is distributed according to a power 
law, we can conclude confidently that  in this system stable chaos appears. 
We will analyse this distribution in the near future. Moreover we will analyse 
systems with much larger numbers of sheets. We might be able to recognise 
clearly the changing of all the time-dependent Lyapunov numbers and the 
distribution functions themselves. Furthermore we will analyse whether the 
stable chaos appears in the real 3-dimensional systems. 
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A b s t r a c t .  The Konishi-Kaneko system is modified to a continuous time 
system. The dynamical and thermodynamical stability is investigated in this 
paper. The dynamical stability is investigated with the use of the collisionless 
Boltzmann equation. The predicted growth rates agree excellently with those 
obtained from N-body simulations. 

Thermodynamic arguments show that  the system has clustered equilib- 
rium states as well as uniform states for 1 /T > 47c/kn, where k is a coupling 
constant and n is the number density of particles. The clustered equilibrium is 
thermodynamically stable and the uniform state is unstable for 1 /T > 47r/kn. 
This stability criterion is the same as that  of the dynamical stability. 

1. Introduction 

Self-gravitating systems have several difficulties to treat with. 1) The poten- 
tial and force both diverge at zero distance, thus the phase space is non- 
compact. 2) The range of force extends to infinity, i.e., the force drops very 
weakly to infinite distance. Though these may be the basic nature of the grav- 
itating systems, they bring about many difficulties to investigate the chaotic 
nature of the systems. We propose a simpler system but which has some 
common properties with self-gravitating systems. 

Konishi & Kaneko (1992) studied the properties of the N-particle sys- 
tem on a one-dimensional unit circle defined by a symplectic map (zi, pi) ~-* 
(x~,d): 

N 
p~ = p, + k ~ sin[27r(zj - xi)], k > 0 (1) 

and 

x~=~,+p~ (mod 1). (2) 
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They discovered the formation and destruction of clusters. Since the sys- 
tem given by Eqs. (1) and (2) is governed by a universal attractive force, the 
system may have some analogies to the self-gravitating systems. For exam- 
ple, both systems develop cluster-like order although they are conservative 
systems. We modify the system given by the map (1) and (2) to a system 
governed by usual Hamilton's canonical differential equations: 

N dp___~i 
= k ~ sin[2~r(xj - xi)] (3) 

dt j#i 

and 

dxi 
dt  = P i  (x: rood 1), (4) 

which are derived from a Hamiltonian 

N N 
H ' - y ~  { 1 2  k Z cos[27r(xj--xi)]} ~ P i -- ~ 

i=I j~i 
The system given by Eqs. (3) and (4) has no singularity at x~ = x j  and system 
size is finite (the length unity). Moreover the system is one-dimensional. Thus 
the system governed by Eqs. (3) and (4) is much simpler than the usual self- 
gravitating systems. 

It is natural to think that the cluster formation in the Konishi-Kaneko 
system is similar to the Jeans instability in self-gravitating systems. So we 
investigate the dynamical instability of the system governed by Eqs. (3) and 
(4) with the use of the collisionless Boltzmann equation. We found that the 
growth rates of instability derived from the collisionless Boltzmann equation 
agree excellently with those obtained by N-body simulations. 

We next consider the thermodynamic stability of the system to examine 
if the destruction of clusters discovered by Konishi ~z Kaneko (1992) is due 
to some thermodynamic instability. Thermodynamic instabilities occur by 
relaxation processes which are not described by the collisionless Boltzmann 
equation. We do not need, however, to derive the collision term to investigate 
the thermodynamic stability if we assume the second law of thermodynamics. 

The collisionless Boltzmann equation is presented and the dispersion re- 
lation is derived in Sect. 2. The growth rates of the instability are compared 
with N-body simulations in Sect. 3. In Sect. 4 we consider the thermodynamic 
equilibrium states. In Sect. 5 we consider the thermodynamic stability. 
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2.  Dispersion Relation D e r i v e d  f r o m  t h e  Collisionless 
Boltzmann Equation 

From Eqs. (3) and (4) we can immediately write down the collisionless Boltz- 
mann equation: 

oy(x,p, t)  of(x,  p, t) + p 
Ot r rOx (5) 

Of(x, t) 
+ ~ jj sin[27r(x' - x)] f(x' ,  p', t) dx'dp' p' - O. 

Op 

It is clear that the state of uniform spatial density with an arbitrary velocity 
distribution, f = fo(P) is a stationary state. We impose a small perturbation 
over the stationary state : f = fo(p)+Sf(x, p, t). From the linearized equation 
for ~f  we obtain the dispersion relation 

Olo(e) 
k ~ f op dp = O. (6) 

From Eq. (6) we see that  there is no collective mode for m ¢ -I-1. The 
dispersion relation (6) has the same form as the gravitational systems (see 
e.g. Lynden-Bell 1967) but the allowed wave number is only m = +1. This 
explains why the number of the clusters numerically observed in the model 
(1) and (2) is limited to one. 

We adopt the Maxwellian distribution function, 

f0(P)-- ~ e x p  --~-~ n ,  

as the unperturbed state, where n is the number density of the particles and 
T is the temperature in energy units. From the well-known Nyquist criterion 
(e.g. Lynden-Bell 1967), we find that  the condition for instability is 

n 4 r  
> --k--. (7) 

This is similar to Jeans' stability criterion for gravitational systems. The 
maximum growth rate occurs at T = 0 and is Wi,max = v/-~k--n. 

3. Comparison with N - B o d y  Simulations 

To examine the validity of the approximation using the collisionless Boltz- 
mann equation we perform numerical integration of Eqs. (3) and (4) using 
a second order symplectic integrator (Kinoshita et al. 1991). A quiet start 
procedure (Sellwood 1983) is used to reduce the amplitude of initial pertur- 
bations. There exist a linear growing stage o v e r  e 30 in the amplitude so that  
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the growth rate is quite accurately determined. The growth rates determined 
by N-body  simulations agree with those determined from the collisionless 
Boltzmann equation at least up to three digits (Inagaki & Konishi 1993). 

Thus we find that the cluster formation in the modified Konishi-Kaneko 
system is described well by the collisionless Boltzmann equation. This result 
implies that  the force is vanishing at short distances and each particle tends 
to move in the averaged potential. 

4. Thermodynamic Equilibrium States 

We assume that  the system is described by a single-particle distribution func- 
tion f(x,p) and define the Boltzmann entropy, S, by 

S = - f f  f(~, p) In f(z, p) dpdz. (s) 

We consider the maximum of the entropy under constraints of constant total 
mass, M, and of constant total energy, E.  

From the necessary condition for the maximum of the entropy under the 
given constraints, 6S - a 6 M  - j3~E = 0, we obtain 

where A = e x p ( - 1  - ~). Thus we found that  the Maxwell-Boltzmann distri- 
bution is the thermodynamic equilibrium states. 

We find that  ¢ is written in the form 

¢(z )  = B cos(2rx) (10) 

(Inagaki 1993). If B = 0, the system has uniform density distribution and 
B 7 ~ 0 gives clustered equilibrium states. It is possible (Inagaki 1993) to show 
that non-zero solution of B is possible only for 

kM 
41rT > 1, (11) 

where T = i/ft. Inequality (11) shows that there are non-uniform equilibrium 
states for sufficiently low temperature.  The condition (11) is the same as that 
for dynamical instability of the system discussed above. 
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5. Stability Analysis 

With the use of Eqs. (9) and (10) we can calculate the total  energy, E,  as a 
function of the tempera ture  T. The total  energy, E,  as a function of 1 / T ,  is 
called linear series and useful to s tudy the thermodynamic  stability of systems 
(Poincar6 1885; Inagaki ~z Hachisu 1978; Katz 1978). The energy E is a single- 
valued function for T > k M / 4 r  and there is a branching at T = kM/4rr .  It  
is evident that  the system is stable for sufficiently high tempera ture  so that  
the system is stable for T > kM/4rr .  From the theory of linear series, either 
branch of T < kM/47r  is stable and the other is unstable. 

Next we investigate the stability of the uniform state (the upper branch), 
using entropy arguments,  that  is, to investigate whether the entropy of the 
system is m a x i m u m  or not. It  is sufficient to consider the states with the 
entropy as high as possible. It  is well known such states have Maxwellian 
velocity distribution (see e.g., Antonov 1962). Thus we assume that  

( P ~ )  
1 -2"-T y(p, x)  _ exp p ( x ) .  (12) 

Then we can consider tha t  the system consists of a gas with the density p 
and the pressure P = pT .  

From the condition tha t  6S  - o~bM - 136E = 0, we obtain 

1 
- Z = 0 (13) 

and 

d P  d e  
d-~ ÷ P~x-x = O. (14) 

Eq. (13) means that  T is constant and Eq. (14) is hydrostatic equation. Using 
the same arguments  as in Sect. 4, we see that  p c< e x p ( - B  cos x) and solutions 
with B ~ 0 exist for T > M k / 4 r c .  

We now proceed to the second order variations. We consider 6T and 6x 
independent variables of variations. V, re examine the max imum of 62 S -  ~62 E 
under the constraint of constant total  energy, 6E = 0. To do so, we impose a 
normalizat ion condition for the perturbation,  

11 - -  = M .  (15) 

Thus we consider the condition of the m a x i m u m  of 

Y= =_ 62S - f162 - p 6 E  - A62d ~ , 

where/z  and ,k are Lagrange's  multipliers. 
From the Euler-Lagrange equation for ~ we obtain that  A > 0 if and only 

if 4rr < f l k M  or 
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k M  
4~r----T > 1 (16) 

(Inagaki 1993). We note that  this condition is the same as the condition for 
dynamical instability, Eq. (7). 

Thus all the conditions for dynamical instability, existence of clustered 
equilibrium, and thermodynamic instability agree. 
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1. Paradigm for Inhomogeneous Mixing Flows 

The Navier-Stokes equation is often used as paradigm for modelling the gas 
in galaxies. Yet the interstellar medium (ISM) is far from being a smooth 
common flow. In fact the cold phase of the ISM, containing most of the gas 
mass, is essent ia l ly  an inhomogeneous medium better described with a fraetal 
model, and where the density can vary by 10 decades over distances much 
shorter than < 1 pc (Pfenniger & Combes 1994). Typically the "mean-free 
path" of clumps at the 10 - 50 pc scale, such as molecular clouds, is much 
larger than their size, and an hydrodynamical description with particles of the 
size of molecular clouds can be, and has been, tried. However molecular clouds 
collide and dissolve because they contain internal degrees of freedom due to 
the smaller clumps moving inside them. For a fractal gas there is no strong 
reason to choose a particular scale. The resolution required to follow such an 
inhomogeneous flow at the 100 pc scale or larger makes the hydrodynamical 
approach hardly tractable with todays computers. 

So for any practical smallest scale one can choose (not to be confused 
with a very small scale that  might be retained in the future with very power- 
ful computers),  the differentiability of the flow required by the Navier-Stokes 
equation for modelling the cold ISM cannot be granted. Although the differ- 
ential fluid equations are in principle inapplicable, those have nevertheless the 
main virtue to conserve locally some of the classical integrals at the smallest 
accessible scale. If the physical flow is highly turbulent and fractal at small 
scale it is illusory to believe that the simulated flow reproduces faithfully the 
detail of the physical flow. But if the physical flow mixes rapidly a part of 
its microscopic properties, as in statistical mechanics only the global inte- 
grals are conserved at larger scale and at least these quantities are relevant 
in simulations. 

However the finite element Eulerian approach for describing fluids, either 
by grid schemes (van Albada 1985; Mulder & Liem 1986; Athanassoula 1991) 
or by beam schemes (e.g. Sanders ~= Prendergast 1974; van Albada et al. 1982) 
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ignores the conservation of the local angular momentum, because this quan- 
t i ty is automatically conserved in the fluid differential equation model where 
the "elements" are infinitesimally small. But with a finite resolution, this is 
no longer true, small eddies disappear within grid cells; a finite resolution 
acts typically as a sink of angular momentum. This can perturb significantly 
simulations of dissipative and turbulent rotating discs; for example the centre 
of a disc galaxy is then a sink of angular momentum. 

Since we don' t  have a proper paradigm for describing flows such as the 
cold ISM, we must invent new ones that  reproduce an efficient mixing at small 
scale while conserving the global integrals at larger scales. Several at tempts 
have been made (e.g. Schwarz 1981; Combes &: Gerin 1985; Jenkins 1992; 
Paloug et al. 1993; Binney &: Gerhard 1993) along the line of describing the 
ISM in a Lagrangian way by a set of colliding particles with substantial 
mean-free paths, as in planetary rings (Brahic 1977). In these works, as well 
as with the "Smoothed Particle Hydrodynamics" (SPH) approach (Friedli & 
Benz 1992) collisions are always binary collisions conserving at least mass and 
momentum. This is computationally inefficient since the algorithms need to 
detect the nearest neighbours and to treat  individual collisions. Furthermore 
some of these codes (Schwarz 1981, Paloug et al. 1993) do not conserve angular 
momentum, which is physically hard to justify. In some way, these particle 
approaches for gas correspond to the stellar dynamical limit in the limit of 
zero dissipation. In the stellar dynamical case one has a well defined scale 
separation between the ISM gas and the gas at the stellar scale, and the 
interaction between the two systems can be neglected for some times. 

In this work we consider whether general dissipative transformations on a 
set of N point mass particles can mimic complex and highly turbulent dissi- 
pative systems in a more efficient way than the previous methods. Fast dissi- 
pative schemes corresponding to the simultaneous "collisions" of N-particle 
that conserve exactly almost all the integrals, including angular momentum 
but not the energy (otherwise the flow would be conservative), are presented. 

2. Mix ing  Trans format ions  wi th  Conservat ion  Laws 

We consider a small region of a physical system for a time sufficiently long 
during which "mixing" physical processes occur rapidly at small scale, but 
short enough to be able to neglect the changes due to long range interactions 
which are supposed to occur at scales larger than the considered region. Dur- 
ing this time, the global integrals except energy are assumed to be strictly 
conserved in the subsystem, because the subsystem can be considered for a 
short t ime ("infinitesimally short" for the larger scale) as isolated. Therefore 
we consider the partial problem of describing consistently the global "colli- 
sions" of N isolated point mass particles. 
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2.1 C o n s e r v a t i o n  Laws  

The N particles are described in an inertial f rame by their positive mass m/, 
their positions xi, and their velocities vi ,  i = 1 . . . N .  We require that  the 
considered dissipative process conserves the total  mass M,  center of velocity 
V and center of mass X 

i / / 

and the total  angular  m o m e n t u m  about  its center of mass, 

L = m, (x,  - X)  A v, ,  (2) 
/ 

i.e. the integrals not involving a particular form of interaction. On the other 
hand the total  energy is not supposed to be conserved. This is mot ivated 
by the fact that  in many  physical cases energy is the less well conserved 
quanti ty owing to the numerous possibilities of exchanging rapidly energy 
by radiative processes. In contrast,  m o m e n t u m  and angular m o m e n t u m  can 
practically only be dissipated by mass exchanges (see, e.g., Shu 1992). 

2.2 A r b i t r a r y  T r a n s f o r m a t i o n s  o f  C o o r d i n a t e s  

First suppose tha t  we apply an arbitrary t ransformation To to the particles 
coordinates at a fixed t ime t. We also suppose that  the particle masses can 
be transformed, but  the new masses must  remain positive. Since the t ime is 
not used, we can set t = 0 in the following. This yields new masses (m~ > 0), 
positions (x~), and velocities (v~) 

xl | = To x, 
vl / v,  

(3) 

In general, To does not conserve the global integrals, yielding new integrals 
M ~, X t, V ~ and L ~. We suppose that  the actual physical t ransformation is 
mizing, tha t  is, except for the global invariants, the memory  of the precise 
initial conditions are lost. So we should "correct" To in order to restore a 
process tha t  conserves the global integrals, except the energy. The corrections 
should be as uniform as possible for all particles, and should not use the 
detailed information about  the old coordinates (the mixing process forgets 
the precise values of the old coordinates, but  not the global integrals except 
the energy). 
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2.3 Mass Conservat ion 

For correcting the mass,  a simple assumpt ion  is to apply  a uniform linear 
mass correction over all the particles: 

x~, | = T1 | x~ , (4) 
v~' / \ v~ 

where .4 and  B are constants.  Then  in order to conserve mass, _4 and B 
should satisfy 

z "  M t ~ -  rn i = A  m ÷ B N = A M  ~ q - B N = M .  (5) 
i i 

Clearly there are m a n y  possibilities. But  in order to guarantee tha t  this cor- 
rection yields positive masses, we require A > 0 and B > 0. 

For example  the pair  

M 
A = a M i  , B = ( 1 - ( ~ )  M -~, (6) 

is a possible solution when 0 _< a < 1 which averages the masses when a is 
sufficiently small.  The  most  mixing  pair  is A = O, B = M / N  (a  = 0), and 
the less mixing pair  is A : M / M  I, B = 0 (a = 1). 

The  main  point  of  this subsection is to show tha t  it is always possible to 
set up  t ransformat ions  conserving the total  mass  and positive masses. 

2.4 Center o f  Mass and Center o f  Velocity Conservation 

In order to conserve also the center of  mass and the center of  velocity, we 
have in general to correct Tz. A correcting t ransformat ion  is tried in the form 
of  a constant  t r ans format ion  T2: 

x~- = T ~ | x ~ ' / = / x ~ ' + c  , (7) 
v~" \ v7 / \v~'+ D 

where C and D are constant  vectors. In order to restore the original centers 
of  mass  and  velocity, we have, wi th  M m = ~ i  m~" = M t~ = M,  

Thus  we have X ~ -- X and V m ---- V when 

C = X - X " ,  and  D = V - V I' . (9) 

We have shown here tha t  it is always possible to correct arbi t rary  trans- 
format ions  in order to  conserve also the centers of  mass and velocities. 
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2.5 A n g u l a r  M o m e n t u m  C o n s e r v a t i o n  

The transformations T1 and T2 provide a new total angular momentum L" '  
that  is generally different from the original one L. Since constant corrections 
are insufficient to conserve angular momentum, we adopt the next simplest 
hypothesis; we suppose a transformation of the velocities only, and having the 
same form for all particles except for a linear dependence on the own particle 
position with respect to the center of mass. Although it could be possible 
to set up more complicated correcting transformations involving both the 
positions and the velocities, we don' t  correct the positions on the ground of 
simplicity. In general, position transformations produce also potential energy 
changes, and forces modify velocities to first order, and positions to second 
o r d e r .  

In order to modify the total angular momentum without changing the 
center of velocity, the simplest velocity correction must be orthogonal to and 
linear with the radius vector to the center of mass. Therefore we require 

' "  ' "  (10) x : ' " | = T 3  xi = xi 
v:'" / '" '" vi vi + ~ / ~  (x:" - x )  

where 12 is a constant vector to specify. This transformation is a solid rotation 
in velocity space that  obviously conserves the mass and the center of mass, 
but it conserves also the center of velocity, since 

' " '  ' " '  ' "  ' "  ( E  '" ' " - M X )  M " " V " " _ = E m l  vi = E r n i  vi + h A  m i x i 
i i i 

• • (11) 
E "'  " '  M V .  =o by Eqs.~8) and (9) = m i v i = 

i 

By using the identity a A (b A a) = a2b - (a .  b) a, then the new angular 
momentum is 

? l l l  l l l l  l l l l  
L " = E m i  (xi - - X )  A v  i 

i 

-- z . . .  , ( x : " - X )  A v  i + ~_~ , (x :"- -X)  A IN A ( x : " - X ) ]  ( !2)  
i i 

-- L '"  + A.~ m~'", ( x : " - X )  2 n - E m:" [ ( x : " - X )  • fl] ( x : " - X )  
i i 

If we require that  the new angular momentum L""  equals the original one L 
m only. we can solve this linear equation for 12 in term of the coordinates x i 

This is a familiar equation of solid body dynamics (see e.g. Goldstein 1950). 

2.5.1  M o m e n t  o f  I n e r t i a  T e n s o r  

First we define the moment of inertia tensor I (mi ,  xi, X) about the center of 
mass X, where xi = (xi, Yi, zi), X = (X, Y, Z), 
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Ixx = Z ~  mi ( = i - x )  2 , 

Iw  = ~ i  mi (Yi-Y)2,  
x , ,  = ~ -~ ( z ~ - Z )  2 , 

Iv, = ~-,i mi ( Y i - Y )  ( z i - -Z)  = I ,y ,  
Z,x = ~ r~ (z~-Z) (x,--X) = X=. 

After some manipulations, we get 

(13) 

S I'! = L"" - L" = L - L"' , 

where S is the symmetric matrix evaluated for I (m~' ,  x~", X), 

-I,= / Iyy+L~ -Zxy 
S = - I x y  I ,~ + Ixx - I y ,  . 

\ -Iz.  -Iy, I.x + Iyy ] 

(i4) 

(i~) 

If S is invertible then I~ = S -1 (L - L t t t ) .  In solid body dynamics - S  is also 
called "inertia tensor" (Golstein 1950), not to be confused with I. 

2.5.2 M atr ix  Inverse  

Explicitly, if we write 

S= - Iyy -k- I ~  , S~t = I . .  + I . x  , S~ - I . x  + Iyy  , (16) 

then the determinant IS I reads 

ISl = sxsys, - 2 I x v l y z l z .  - s x l ~ .  - S ~ l ~ x  - s . I 2 = y  , (17) 

and the inverse matrix S-1 has the form 

S -1 -- 2 ~ ,yzIz.  -.[- *xySz SzS. - I2z. Izx.[., + *yzS. ) . (18) 
- I S l  \xxg~z + hxs,  hxxx~ + x~,s= s=s, - z~=~ 

2.5.3 D e g e n e r a t e  Cases 

If S is not invertible, because IS[ = 0, we have an infinite number of possible 
solutions to Eq. (14). In such cases, as a proxy of S -1 it is recommended to 
take the Moore-Penrose pseudo-inverse S t (Moore 1920; Penrose 1955), yield- 
ing the unique solution with optimal properties in the least-squares sense. 

The pseudo-inverse A t of any matrix A is the unique matrix that satisfies 
A t A A  t = A t,  A A I A  = A ,  and both A t A  and A A  ! are symmetric. The 
derivation of the pseudo-inverse can be found symbolically (most easily by 
computer algebra) with the relation 

A t = lira [ ( A T A  + ¢ 2 I d ) - I A T ]  (19) 
~--~0 

where A T is the transpose of A and Id is the identity matr ix (Frawley 1985). 
By a rotation and a translation the moment of inertia tensor I can be 

made diagonal, and then all the crossed moments Ixy, Iyz, and Izx vanish. 
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In tha t  case S is also diagonal  and is not  invertible only in the case where 
at  least two of  the three non-negat ive tensor components  Ix×, I ~  and Izz 
vanish (see Eq. (15)). This  means  tha t  all the points are colinear, i.e. have 
the fo rm xi = ati + b,  where a = {ax, ay, az} and b are constant  vectors. 

In  this case, S takes the form /22 ) ay + a z --axay --azax 
2 + a~ --ayaz K ~ - a x a y  a z 

8 = - ~  \ --azax --ayaz a x + a z 2 2 

where 

( 2 0 )  

1 
K =_ Ix× + I y y  + I z z  = - ~ ' ~ m i m j ( t , - - t / )  2 . (21) 

i j>i 

If  K > 0 then the use of  Eq. (19) leads to the pseudo-inverse S t 

St __-- K - 2 S  . 

I f  K = 0 then all the points  are concomi tan t  and S t = 0. 

(22 )  

2.5.4 C a s e N - - - - 2  

In this par t icular  case S is always not  invertible since two points  are always 
colinear. Explici t ly the pseudo-inverse S t is 

s t  = ml  + m2 1 × 
mira2 (xi - x2)  

/(yl--y2)2-~-(Zl--Z2) 2 - - (Xl - -X2) (y l - -Y2)  --(Zl--Z2)(Xl--X2) ~ (23) 
x | - ( x l - z 2 ) ( y l - y 2 )  ( z l - z2 )2+(x l - z2 )  2 --(Yl--Y2)(Zl--Z2) l "  

~-- (Zl  -- Z2)(XI -- X2) --(yl--Y2)(Zl--Z2) (Xl--X2)2+(yl--y2)7 

Of course, if Xl = x2, we have fur ther  degeneracy, and then S t = O. 

3 .  E x a m p l e s :  L i n e a r  F r i c t i o n  L a w s  

3.1 Binary Interact ions 

Often dissipative part icle schemes (Brahic 1977, Sehwarz 1981) use b inary  
interactions.  In  this case one can consider successively pairs of  particles, so 
we need to  consider a dissipative law for N = 2. As a first guess a linear 
friction law with respect to the center of  velocity is a t t emp ted  

To xi = xi  , i = 1, 2, (24) 
v i  v~ - c~(vi - V 
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where a is a constant. This transformation conserves the total mass and the 
centers of mass and velocities, therefore T1 and 7'2 are identity transforma- 
tions. But this friction law does not conserve in general angular momentum. 
Indeed the angular momentum difference is then 

m l m 2  , 
L'" - L = L" - L = - 4 ~ X l  - x~) A ( v l  - v 2 ) .  

Calculating explicitly the transformation T3 by using the pseudo-inverse S t 
in Eq. (23), we get, after algebraic manipulations, 

T3 xi = xi , i = 1, 2, (25) 
vi  v i - 4 ~ [ d i j  - ( v i  - v/)] dl/ 

where j = 3 - i (j  = 2 if i = 1 and vice versa), and 

xi - xj (26) 
d i j -  ix i - x j  I. 

This is precisely the friction law used by Brahic (1977). Only the relative 
velocity component parallel to the interparticle vector is reduced. This trans- 
formation conserves all the integrals but the energy. Noting 

mlra2 2 
C1-= 2M [ d 1 2 ' ( v 1 - v 2 ) ]  >_0, (27) 

the final kinetic energy difference is then 

~ E -  ~1 [m~(v~'"~ - v~) + m~'v'"'~2 - v~)] = - ~  ( 2 -  ~)C~ . (28) 

So if 0 < 4 < 2 the kinetic energy change is negative. The kinetic energy 
change vanishes when either the vectors of position or velocity difference, 
xl  - x 2  or v l  - v 2 ,  are zero, or when these vectors are orthogonal. 

In order to find a for a specified energy change AE, we solve Eq. (28) for 
4, and find, 

A E  (29) 4 = 1 +  1 +  C--~- 

This provides the two possible transformations 

[d l~ .  ( ~ 1 -  ~)]%. (30) 

The ( - )solu t ion  is the one which is continuous with no change in velocity 
when A E  = 0. The (+)solution reverses the sense of the relative velocity. 

When the energy change is sufficiently small, tAE[ << C1, by expanding 
the square root the ( - )solut ion is approximately 
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A E  

v~'" ~ v,  + re, d12. (vl  - v2) d ' j "  (31) 

When the energy change is large and positive, A E  >> C1, the approximate 
solution reads 

, , , ,   12 Em, 
v i ~ v l  7= V M rn i d i j  . (32) 

The minimum energy change compatible with this type of dissipation is 
given by 

A E  > - C l  • (33) 

3.2 N I n t e r a c t i n g  Par t i c l e s  

Instead of considering particle interactions by pairs, it is much more efficient 
to group the interactions with larger N. This is justified if the mixing process 
has time to mix the properties of the N particles during a finite time-step. If 
a linear friction law is used for an arbitrary number N of particles, we would 
h a v e  

x T | = T o  x ,  = x ,  , (34) 

, ,~' / " , ,  . ,~, - ~ ,~ i  

where ~ is a constant. Then T1 is an identity transformation and 

x T ' /  = T 2  x~ = x~ . (35) 
v~" ] v ,  v ,  - ~ ( v ,  - v )  

The transformation T3 is too complicated to give in closed form, but it is 
straightforward to evaluate numerically Eqs. (13), (15), and (18) efficiently 
with a computer,  since the algorithm is proportional to N. Also in this linear 
case we do not need to evaluate L'"  since one obtains, 

Si2 = L - L"' = ~L, ~ F~ = aS-IL,  (36) 

where S-I  has to be replaced by S t in case of degeneracy. Finally, 

v~'" = vl - a (vi - V + S - 1 L  A (xi - X ) ) .  (37) 

The kinetic energy difference A E  is given by 

~ E  = ½ ~ m , ( ( v  7 ' -  V)  ~ - (v, - V)  ~) = -2,~C1+~2C~, (38) 
i 

where 
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Cl-- ~1 2 m i ( v i  - - V ) .  (Y i -- V--~ S-1L A (xi - X)) 

i (39) 
C2 -~- 1 E  mi ( v i -  V - [ - S - I L A  ( x i -  X)) 2 __~ 0.  

i 

Solving a as a function of AE, we obtain 

Cl /Ic,  2 AE 
= + , l l  + (40) 

where the ( - ) so lu t ion  is the one continuous with the identity at small dissi- 
pation (a  ---* 0 when A E  --~ 0). 

The most  negative energy change is bounded by 

A E  > C~ (41) 
- C2 

For the ( - ) so lu t ion ,  when dissipation is weak (]AE] << C~/C2), we have 
small energy changes and we get 

ol ,~ - ½ A E / C 1 .  (42) 

For large positive energy changes (AE ~ C~/C2 ) we get 

a ~ - v / A E / C 2 .  (43) 

Finally when a = 2 we have the particular case of strong mixing and yet 
energy conservation, as in isothermal processes. 

4 .  C o n c l u s i o n s  

We have shown how to treat  consistently a set of rapidly mixing particles. It  is 
possible to devise various dissipative transformations and then correct them 
to conserve the mass, centers of mass and velocity, and especially the total  
angular momen tum.  Furthermore,  for simple linear friction laws it is possible 
to specify in advance the energy dissipation. In that  case the conservation 
of the other integrals constraints the energy loss not to exceed a max imum 
value. 

Among all the possible corrective transformations that  we have described 
above, only a small part  may  be applicable in actual physical systems. In real 
systems further constraints restrict the possible mixing and thus the dissipa- 
tion rate, e.g., when a flow expands its internal viscosity is much smaller than 
when it contracts. Only studies with specific problems will allow us to choose 
the "right" way to model dissipation and mixing. At least the formulation 
here is general and consistent with the most  fundamental  constraints that  
fluids are thought  to follow. For example in a shock, another instance where 
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the hydrodynamic description fails, the shock conditions require precisely to 
conserve mass and momentum. Here not only these quantities, but also the 
angular momentum are automatically conserved. 

Presently we are experimenting with these transformations. We have im- 
plemented the correcting transformations in simple N-body systems (N 
100, and in large-scale N-body simulations (N ~ 2.  105). It is straightfor- 
ward to check that  the integrals are indeed conserved exactly. Applications 
to disc galaxies are investigated in  which self-gravity is calculated with a 
Particle-Mesh method in a 3D polar grid (Pfenniger & Friedli 1991, 1993). 
This approach allows to simulate gas at large scale much more efficiently that 
traditional hydrodynamical  codes, and is not less realistic with respect to the 
ISM than the hydrodynamical  models since the ISM is highly inhomogeneous 
at small scale, and no global equation of state is known. In comparison with 
the SPH technique, 10 times more particles runs 10 times faster with the law 
discussed in Sect. 3.2, essentially because there is no need to find the nearest 
neighbours. Instead all the particles within the same grid cells used for the 
gravitation calculation mix their momentum at a specified rate. 
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1 .  I n t r o d u c t i o n  

At every moment  dynamical systems are being evolved with the aid of nu- 
merical integration algorithms. Unfortunately, it is not always easy to de- 
termine whether even the qualitative features of differential equations are 
well-preserved by numericM "solutions". This is especially true for systems 
that  display chaotic behaviour, and particularly so if the apparent chaos is 
weak and slow as in the evolution of the planetary orbits (see the recent 
review by Duncan & Quinn 1993). 

A numerical integration method is said to be order k if the theoretical or 
truncat ion error after one time-step At is O ( A t k + l ) .  Truncation error is an 
unavoidable consequence of taking a finite time-step. Additionally, roundoff  
error occurs if machine arithmetic is not done exactly; this is normally the 
case if floating-point numbers are used and it introduces unwanted noise to 
integrations. 

With a time-step At and floating-point numbers with P significant binary 
digits we may estimate the relative importance of the two types of error with 
what we shall call the error ratio, 

2 -P  
T~(P, A t ,  k) -- A tk+ 1 . (1) 

Strictly, the total roundoff error depends in a machine-specific way on the 
sequence of arithmetic operations required at each step (2 - P  is a lower limit 
for quantities of order unity) and the truncation error is of the form C A t  T M  

only in the limit At ~ 0 (we have ignored the constant C). Nevertheless, 
Eq. (1) can be used as a rough guide: roundoff may be unimportant  ifT~ << 1 
but dominates the computational  error if 7~ >> 1. To achieve a given level 
of truncation error, it is much more efficient to use a modest time-step with 
a high order method than a tiny time-step with a low order method, so in 
practice 7~ << 1 in low order implementations and T¢ >> 1 in high order 
implementations (such as those used in most solar system integrations). 



Symplectic Integration Without Roundoff Error 123 

Integration errors are usually quantified by monitoring the evolution of 
constants of the motion, such as the total energy in a Hamiltonian system. For 
example, the maximum length of solar system integrations has been guided 
by an energy error tolerance. Quinn &= Tremaine (1990) showed that  energy 
errors could be greatly reduced by carefully avoiding (mainly) the bias of 
computers to round up in all floating-point additions. This trick does not 
eliminate roundoff error but substantially reduces its influence, at a cost of 
about  a factor of 2 in computing speed. 

The magnitude of the errors is important,  but so is the character of the 
errors in long-term studies that  aim to determine qualitative behaviour. In 
the case of the solar system, we would like to distinguish regular from weakly 
chaotic motion so we would like some reassurance that  the numerical errors 
(principally roundoff) do not significantly alter the qualitative features of the 
orbits. 

The simplest way to start in analyzing roundoff error is to consider a sys- 
tem in which the only error is roundoff. This is the case for maps. Earn & 
Tremaine (1991, 1992; hereafter ET) showed that  roundoff errors cause arti- 
ficial drifting across invariant curves in Hamiltonian maps and can even lead 
to confusion between regularity and chaos. The elimination of roundoff error 
in area-preserving maps of the plane was first considered by Rannou (1974). 
ET showed that  Rannou's method can be applied to Hamiltonian maps of 
arbitrary dimension. To eliminate roundoff error, a given map is slightly per- 
turbed so that  it maps a lattice of points to itself and can be iterated exactly 
on a computer. As shown in ET (and Scovel 1991) these lattice maps have 
the same mathematical  structure as the original maps, i.e., they are Hamil- 
tonian (unlike the maps induced by applying floating-point arithmetic to the 
original formulae). 

Lattice maps are known to reduce qualitative errors (e.g., ET).  Here, the 
lattice approach is applied to a fourth-order integration algorithm and it is 
found that quantitative errors (in the conservation of integrals) can also be 
significantly reduced, even in the short term. 

2 .  S y m p l e c t i c  I n t e g r a t i o n  a n d  L a t t i c e  M a p s  

Most numerical integration algorithms are not designed specifically for Hamil- 
tonian systems and do not respect their characteristic properties, which in- 
clude the preservation of phase space volume with t ime (Liouville's theorem). 
This can lead to spurious damping or excitation. Methods that  do preserve 
all the Hamiltonian properties, i.e., for which the time-forward map is sym- 
plectic, are called symplectic integration algorithms or SIAs (e.g., Channell 
&: Scovel 1990; Sanz-Serna 1992; Yoshida 1993, and references therein). 

Since we are mainly interested here in the gravitational N-body problem, 
we restrict at tention to Hamiltonians in potential form, i.e., which can be 
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written H = ½v 2 + U(x).  A variety of useful SIAs for such Hamiltonians can 
be derived from two simple symplectic shears, 

For example, the (first order) leapfrog scheme is 

s (m) o (3) 

The (second order) time-centered leapfrog scheme is 

Sx(½At) o Sv(A 0 o Sx(½at). (4) 
A fourth order SIA is given by 

S x ( a n  0 o Sv (ba t )  o Sx(en t )  o S v ( d m )  o S . ( c m )  o S , ( b m )  o S ~ ( a n t ) ,  (5) 

where a = 1/(2(2 - t ) ) ,  b = 1/(2 - t ) ,  c = (1 - t ) a ,  d = - t ic ,  and t = 21/3- 
This method,  which we shall call Ruth_4, is the fourth-order member in the 
class of algorithms introduced by Ruth (1983). (All these schemes are imme- 
diately generalizable to separable Hamiltonians H = K(p)  -4- U(q).) Ruth_4 
was discovered by Ronald Ruth and first published by Forest & Ruth (1990). 

Although all integrators derived from Eqs.(2) are symplectic in theory, 
they are not symplectic if implemented using finite-precision arithmetic. This 
problem can be overcome by replacing the shears Sx and Sv with lattice 
shears, 

 x(t) : ' = , ( 6 )  

where m is a (large) constant integer and [.] denotes the nearest point on an 
integer lattice in phase space. Particles on lattice points are mapped to lattice 
points by S,¢ and S,, since integer additions can be done exactly. As shown 
in ET, lattice shears are symplectic so lattice leapfrog and lattice Ruth_4 are 
exactly symplec~ic in pracfice despite the use of finite-precision arithmetic. 
Using a lattice SIA is equivalent to evolving the exact solution of a problem 
with a Hamiltonian that  is slightly different from the original. 

The leapfrog methods are not likely to benefit much from the lattice 
approach for two reasons: (i) For practical time-steps T~ << 1, even if only 
single-precision (four byte) floating-point arithmetic is used. (ii) To avoid 
loss of precision in the force and velocity components when using a lattice 
map we must have m a t  > 2 P (see Eqs.(6)). Therefore, since computers 
provide integers within finite limits only, there is always a minimum time- 
step permissible in a lattice SIA, independent of the order of ~he method. For 
low order methods such as leapfrog the minimum At is typically too large to 
obtain acceptably small truncation error. 

For a fourth-order integrator the role of roundoff error is significant. We 
concentrate on the Ruth_4 algorithm here. 
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3 .  O r b i t a l  Elements  

The gravitational two-body problem is fully integrable and is equivalent to 
the motion of a single particle in a Kepler potential ( - l / r ) .  There are five 
isolating integrals of the motion (e.g., Binney & Tremaine 1987). In celestial 
mechanics the integrals are normally expressed as geometric quantities known 
as the orbital e lements  (e.g., Brouwer &: Clemence 1961). 

The shape of the (elliptical) orbit is determined by its semi -major  axis a 
and eccentricity e. The current phase of the orbit is given by its mean 
anomaly  g(t), and g(0) _-- g0 is a constant of the motion (not an isolating in- 
tegral). The orbit 's orientation is determined by its argument  ofpericentre  w 
(the angle in the orbit plane from ascending node to pericentre), longitude 
of  ascending node /2, and inclination I.  In terms of the orbital elements, 
the energy is E = - G M / 2 a  and the magnitude of angular momentum is 
h = ~ / G M a ( 1  - e2), where M is the total mass ("sun" plus "planet").  

In a perfect integration (no truncation or roundoff error) all the orbital 
elements would be exactly conserved. 

4. Sample Integrations 

Ruth_4 has been tested with the gravitational two-body problem by Ki- 
noshita, Yoshida & Nakai (1991, hereafter KYN). To facilitate comparisons, 
we use the same initial conditions and time-step as KYN in all the tests re- 
ported here, namely a -- 1, e : 0.1, go -- w --: /2 -- I -- 0.349tad ~ 200 and 
At = 0.01 __- 1/628 orbital periods (T = 2 ~ r ~ ) .  Units are specified by 
G = l and M = l. 

Fig. 1 shows the evolution of the six orbital elements for ten orbital periods 
of the two-body problem. Integrations were conducted with ordinary Ruth_4 
(dotted curves) and lattice Ruth_4 (solid curves) each employing eight byte 
(64 bit) arithmetic (in the top four panels the dotted and solid curves lie on 
top of one another).  With a lattice size of m -- 262 the minimum permissible 
time-step is 2 R i m  ~- 0.002 so At  =- 0.01 does not degrade the force or 
velocity components. Put  another way, with P = 53 and At = 0.01 we require 
m > 253/0.01 ~ 260 to prevent loss of precision, so m = 262 is large enough. 
However, the error ratio is 7~(53, 0.01, 4) "~ 10 -6 so the lattice approach is not 
expected to improve the integration noticeably. In Fig. 1 there is no apparent 
difference in the evolution of the first four elements but  there is a very clear 
reduction of errors i n /2  and I in the lattice integration. The explanation is 
that  the Ruth_4 integrator exactly conserves the angular momentum vector 
(cf. KYN) so the errors in /2  and I are entirely due to roundoffdespite the fact 
that  T~ ~ 1. The errors in the other elements are dominated by truncation 
error (on this timescale at least). 
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Fig.  1 Errors in the orbital elements during 10 orbital periods of the gravitational 
two-body problem. Eight byte arithmetic was used with ordinary RuCh_4 (dotted 
curves) and lattice Ruth_4 with rn = 262 (solid curves). The dotted and solid curves 
coincide in the top four panels. ~ and I (bottom two panels) are more accurately 
conserved by the lattice method. In the exact solution, all six orbital elements are 
exactly conserved 

In Fig. 1, there are small-ampli tude oscillations in a, e, go and w, the 
elements dominated by truncation error; such oscillations are expected in any 
symplectic integrator. In addition, the error in go grows because the numerical 
scheme has a slightly incorrect period, and the error in w increases because 
the numerical potential  is slightly non-Keplerian so the orbit precesses. There 
is no reason to expect a symplectic algori thm to avoid these secular errors. 
(Of course, they are smaller with higher order SIAs.) 

The characteristic oscillations in the elements do not occur if roundoff 
dominates  the computat ional  error. Fig. 2 shows integrations for the same 
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Fig. 2 Integrations of the two-body problem with four byte arithmetic. Lattice 
Ruth_4 with m = 230 (solid curves) yields more accurate results for all six elements 

number of steps as in Fig. 1, this time using four byte (32 bit) arithmetic, i.e., 
half the precision. The error ratio is now 7~(24, 0.01, 4) ~ 600 so the lattice 
approach is expected to help. However, to avoid degrading the force and 
velocity components we require m = 224/0.01 ,-, 231. When using four byte 
integers it is not practical to use m > 230 since this would risk integer overflow 
from additions, so m = 230 was used for the test shown in Fig. 2. Despite 
this, lattice Ruth_4 conserves all the elements more accurately than ordinary 
Ruth_4. The improvement is by a factor of about  20 for a, 14 for e, 21 for t0, 
14 for w, 14 for ~2, and 33 for I (maximum errors in energy and angular 
momentum are each reduced by factors of about 20). The improvement is 
greater if the error ratio is larger: repeating the integration with At = 0.002 
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Fig. 3 Expanded scale plots of the results of the lattice Ruth_4 integration shown 
in Fig. 2. Oscillations typical of SIAs are evident 

yields factors of about  36 for a, 51 for e, 34 for go, 107 for ~v, 22 for #2, and 
42 for I (and 36 for E and h). 

Beyond the reduction in the magni tude of the errors that  is obvious in 
Fig. 2, an expanded plot of the lattice integration (Fig. 3) shows that  exact 
symplectici ty has restored the expected periodicity in the elements (see e and 

especially). There appears  to be an extra oscillation on a timescale of about  
five orbital  periods and in general the curves are nowhere near as smooth 
as those in Fig. 1. The lack of smoothness is not surprising since to avoid 
roundoff error the lattice method introduces very small scale fluctuations in 
the Hamiltonian;  these are not present in the Ruth_4 algori thm itself. Note 
tha t  the periodicity observed in Fig. 3 is not the oscillation due to truncation 
error tha t  is intrinsic to Ruth_4-- the  ampli tude of that  is smaller by two 
orders of magni tude (compare Figs. 1 and 3). 
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This paper has shown that  the lattice Ruth_4 algorithm outperforms ordinary 
Ruth_4 when the computational  error is dominated by roundoff (T~ >> 1). In 
integrations of the gravitational two-body problem with a time-step At = 
0.01, the magnitude of the errors is reduced by a factor of order 20 (Fig. 2) and 
the character of the errors is more like what is found when truncation error 
dominates (compare Fig. 3 to the ordinary Ruth_4 integrations in Figs. 1 and 
2). The reduction of errors is more significant in going from ordinary Ruth_4 
to lattice Ruth_4 than from a fourth-order (non-symplectic) Runge-Kutta  
integrator to ordinary Ruth_4 (the experiment conducted by KYN). 

The time-scale considered here is very short (10 orbital periods) but sim- 
ilar improvement occurs in much longer integrations. Using the lattice ap- 
proach can clearly have noticeable qualitative effects on the dynamics only 
after a very long time. Studies that span millions of orbital periods may 
benefit significantly from the use of lattice SIAs. 

Yoshida (1990) extended the Ruth class of SIAs to arbitrary (even) order; 
the lattice approach applies to all these integrators. More work is necessary 
to find high order SIAs whose efficiency compares well with the multi-step 
methods that  are currently used in solar system integrations (e.g., Quinn, 
Tremaine & Duncan 1991). This is a challenging problem because some of 
the free parameters that  could be used to increase order must be used to 
arrange symplecticity. 

To force roundoff to dominate the Ruth_4 integrations, four byte arith- 
metic was used. The factor by which the elements are conserved better by 
lattice Ruth_4 increases as the time step is reduced, i.e., as roundoff becomes 
relatively more important .  This suggests that  the relative gain achieved by 
lattice methods is likely to be more significant for higher order integrators 
(for which 7~ >> 1 even when using eight byte arithmetic). In long integra- 
tions requiring high order methods, such as simulations of the solar system, 
lattice SIAs may offer the best way to reduce the effects of numerical errors 
on dynamical evolution. 

The m = 262 lattice integration shown in Fig. 1 was done on a Con- 
vex computer,  which provides full eight byte integers in hardware. Unfortu- 
nately, most computers do not supply full length integers in hardware, i.e., 
the longest integers are not as long as the longest floating-point numbers. In- 
teger ari thmetic can be done using the longest floating-point numbers, which 
typically raises the maximum lattice size from m = 230 to m = 252. This is 
very valuable for studies of maps (e.g., ET) but  it is usually not sufficient 
to benefit lattice SIAs (because of the requirement that  m a t  > 2 P to avoid 
degrading the force and velocity). 

Lattice methods are useful for studies of the long-term evolution of Hamil- 
tonian systems. For Hamiltonian maps, it is usually advantageous to use the 
lattice approach. For continuous t tamiltonian systems, lattice methods sig- 
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nificantly reduce the errors in high order SIAs. This improvement  is obtained 
without significantly compromising efficiency provided that  full length inte- 
gers are available in hardware. Thus, for a Hamiltonian problem requiring a 
high order integrator, and a computer  with full length integers, a lattice SIA 
should be used. 
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Abstract. We have investigated the effect of the numerical error of the 
force calculation on the accuracy of the result of collisionless N-body simu- 
lations. Our main result is that  force calculation with a low accuracy - -  a 
few percent for each particle pair - -  is sufficient, irrespective of the num- 
ber of particles. Higher accuracy is useless since the discreteness noise, i.e., 
the two-body relaxation effect, dominates the error. We have performed nu- 
merical experiments for two different cases: a special-purpose machine with 
low-precision hardware and the tree-code. In both cases, the two-body re- 
laxation effect dominates the error and the effect of the error in the force 
calculation is practically negligible for all cases we tried. 

1. I n t r o d u c t i o n  

For a large stellar system, such as a galaxy containing more than 101° stars, 
the two-body relaxation time is much longer than the age of the universe. 
These systems can be described by the collisionless Boltzmann equation. To 
study the t ime evolution of such systems, we approximate the continuous 
distribution function by an N-body system with the number of particles 
smaller than that  in real galaxies. The two-body relaxation effect makes the 
evolution of the N-body  system different from that  of the original system. 

The two-body relaxation is due to the fluctuation in the potential field 
expressed as the superposition of N point-masses. The potential calculated 
by the N-body  approximation contains the error of the order of 1/vfN. This 
error in the potential  randomly changes the velocity of particles. This random 
change of the velocity is the two-body relaxation effect itself. In fact, the 
change of the velocity due to the two-body relaxation per crossing time is 
O(v/-N), which is consistent with the above description. 

The only way to reduce the two-body relaxation effect is to increase the 
number of particles (Iternquist & Barnes 1990). Therefore, as long as the 
effect of the numerical error is smaller than the two-body relaxation effect, 
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one should increase the number of particles at the cost of the numerical 
accuracy, in order to improve the overall accuracy of the result. 

In the paper, we evaluate the effect of the numerical error in the force 
calculation to the overall accuracy of collisionless N-body simulations. We 
consider the numerical error introduced by the tree-code (Barnes & Hut 
1986) and the low:accuracy calculation on GRAPE-3 hardware (Okumura 
et al. 1993). 

GRAPE-3 is a special-purpose computer designed for the fast t ime inte- 
gration of astrophysical N-body systems. In N-body simulations, the calcu- 
lation of the force between particles consumes most of the CPU time, even 
when an O(N log N)  algorithms such as the tree-code is used. A GRAPE (an 
abbreviation for GRAvity PipE) is a specialized hardware for the fast calcu- 
lation of the gravitational force between particles. It has 48 parallel pipelines, 
each of which can calculate the gravitational force in the speed of 300 Mflops. 
Thus the peak speed of GRAPE-3 is 14.4 Gflops. Typical sustained speed is 
in the range of 5-10 Gflops, depending on the number of particles. 

To achieve the high level of parallelism (48 pipelines each of which per- 
forms about  30 floating point operations simultaneously), we implemented 
one pipeline into a custom LSI chip. In order to reduce the physical size 
(and thus the price) of the chip, it was necessary to reduce the numerical 
accuracy. We have adopted a combination of the fixed-point and logarithmic 
number format,  so that  the relative accuracy of the pairwise force is about 
2% and the accumulation of the forces from many particles will not produce 
no unpredictable round-off errors. 

The theoretical basis of the analysis presented here has been described 
in more details by Makino et al. (1990). Detailed numerical result has been 
given by Hernquist et al. (1993). 

2. Numerical  Experiments  

We integrated the t ime evolution of the Plummer model for 3 crossing times 
using six different methods for force calculation. Table 1 gives the methods 
we used. In the system of units we used, the half mass radius is 0.77 and 
the crossing time is 2v~.  We used the standard Plummer softening with the 
softening length of e = 1/32. Time integration is done using the leap-frog 
scheme with the time-step of At = 1/64. 

We calculated the root-mean-square relative change of the binding energy 
of par crossing time defined as 

1 ~[(Ei, l-Ei,o)]  2 
~2 = ~ ,:1 L E~o ' (1) 

where Ei,o and Ei,1 are the energies of particle i at the times to and tl.  



Discreteness Noise Versus Force Errors in N-Body Simulations 

Tab le  1. Methods used 
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Graphic symbol Method 

Filled circle 
Open circle 
Filled square 
Cross 
Filled triangle 
Three-armed cross 

N 2 direct summation on a Cray YMP 
N e direct summation on a GRAPE-3 
Tree-code with 0 = 0.5 and quadrupole moment 
Tree-code with 0 = 1.0 and quadrupole moment 
Tree-code with 0 = 0.5 and monopole moment 
Tree-code with/9 = 1.0 and monopole moment 
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Figure  1 shows ~r 2 as a func t ion  of N,  for 2048 < N < 65536. The  rms 
energy change is pract ical ly  the same for all 6 methods  used, except tha t  
tree-codes wi th  8 = 1 show somewhat  larger change for large values of N .  In 
order to separate  the energy change due to numer ica l  error f rom tha t  due to 
two-body re laxat ion,  we calculated the quan t i t y  

= 5-n-n - i ,  ( 2 )  
erR,direct 

where OrR,direct iS the energy change for the runs  with the direct s u m m a t i o n  
on a Cray YMP.  For tree-codes with # = 1, $ is a round  0.1, for G R A P E -  
3, ~ -~ 0.01, for tree-codes with /9 = 0.5, ~ --~ 0.003. The  dependence of 

on N is very weak. Thus  we can conclude t ha t  the energy change due to 
numer ica l  error is smal ler  than ,  and  propor t iona l  to, the two-body re laxat ion,  
and  therefore would become smaller  as we increase the n u m b e r  of particles.  
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3. D i s c u s s i o n  

A simple theory (Makino et al. 1990)predicts that  the effect of the numerical 
error is proport ional  to the two body relaxation effect (i.e., ~ is constant), if 
the error of the forces between different pairs of particles are independent. 
Therefore, even if the force calculation contains some constant amount  of 
error, the numerically integrated N-body  system converges to the continuous 
system in the limit of N --+ c~, since both the two-body relaxation and 
numerical error approach zero. 

The effect of the numerical error becomes small as we increase the number 
of particles s imply because of cancellation of errors of different forces. If  the 
errors are independent of each other, the numerical error of the force on a 
particle, which is the summat ion  of N forces, is O ( 1 / v ~ ) .  This dependence 
is the same as tha t  of the fluctuation of the potential  due to the finite number 
of particles, which is the source of the two-body relaxation effect. 

The numerical errors of the tree-code or G R A P E  hardware are not really 
random. Therefore, for a very large N,  the energy change due to numerical 
error would become constant. However, the result of our numerical experi- 
ments suggests tha t  for practical values of N the errors can be regarded as 
random. To summarize,  the effect of the numerical error in the force calcula- 
tion to the accuracy of the collisionless N-body  simulation is smaller than the 
two-body relaxation effect, for all of the six methods we tested, independent 
of the number  of particles. 
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Core  M o t i o n s  and Globa l  Chaot i c  Osc i l la t ions  
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1. Ancient History 

I t  may  be of interest to recall the discovery and early development of the ex- 
ponential  separation of particle trajectories in gravitational N-body  problems 
before we turn to the principal subject of this review. 

The exponential separation of trajectories was found as one of those cases 
in which something unexpected happens in a calculation, and a discovery 
was made as a result of tracking it down. Call it serendipity. In this case, 
I foolishly thought  that  a good way to check new a gravitational N-body  
program would be to test it for microscopic reversibility. Tha t  produced a 
disaster. 

The computer  program was pat terned after that  of von ttoerner (1960). 
It  included a few unusual features, such as the speedup from recomputing 
force contributions f rom distant stars infrequently, a speedup later associated 
with the names of Ahmad & Cohen (1973). I didn' t  think it was important  
enough to mention in the paper. Computers  were small and slow by today 's  
standards,  so experiments were limited to 25 - 32 bodies, and many  were run 
with as few as 4, 8, or 12 particles. 

Failure to reverse got worse and worse as the experiments were extended 
to longer times. Runs to T, 2T, 4T, and so on were annoying because many  
of the computer  cycles were used re-computing the same interval. There were 
difficulties associated with reversing the system and re-starting it in the re- 
verse direction as well. 

"Parallel calculations", in which two nearly identical systems run for- 
ward in time, more or less in lockstep, provided a nice way around this 
difficulty. They led to the plots of Fig. 1 taken from the original 1964 pa- 
per (Miller 1964), in which the logari thm of the trajectory separation in the 
6N-dimensional  phase space is plotted as a function of time. The top panel 
shows an 8-body system, while a 12-body system is in the bo t tom panel. The 
underlying linear trend in these plots indicated exponential separation. 

The rapidity of the separation and the huge increase above the original 
separation both struck me at the time. In a very few crossing times, trajectory 
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separation could become large enough that the two systems would no longer 
realize they had a common parentage. And this started with very small initial 
separations. N-body  systems with different potentials, such as the molecular 
6 - 12 potential, acted differently. There was still exponentiation, but the 
continued slope between close encounters was absent. 

Standish (1968) soon confirmed the effect and made the first study of the 
effect of softening near encounters. At about that same time, Lecar undertook 
to define a "standard" initial condition for gravitational N-body calculations 
that would allow workers to verify their codes, although he was warned of 
impending disaster. Results from that check provide the one of the most 
dramatic demonstrations of the power of the exponentiation that has ever 
been published (Lecar 1968). 

I didn't  know the language of Lyapunov characteristic numbers or of 
Kolmogorov entropy at the time. Some time later, I found that Krylov (1979) 
had essentially described the process underlying the separation. Recall that 
all this was long before chaos theory became fashionable--it  came at about 
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the same time as the famous paper describing the Lorenz Attractor (Lorenz 
1963). 

Although there is an exponential process, and the characteristic time scale 
of any exponential process can be called a "relaxation time", the e-folding 
t ime associated with trajectory separation is not the same as the standard 
relaxation time of stellar dynamics. A system may have several relaxation 
times. Think of the spin-echo system. This is simply another relaxation time 
within a stellar dynamical system in addition to 2-body and mean field (vio- 
lent) relaxation. Exponentiation and 2-body relaxation have been mistakenly 
associated in the past. 

Several questions from that  time are still open. 

1. Estimate the e-folding time from first principles, 
2. The N-dependence of the e-folding rate, and 
3. How can we draw valid physical inferences from a calculation in which 

the underlying physical process is chaotic? 

You've heard some recent work on (1) and (2) at this Workshop. Sim- 
ple analytic estimates for (1) gave 1 / V ~ ,  but they usually contain some 
untenable assumptions (principally uncertain estimates of the importance of 
pairing terms). An early a t tempt  is in Miller (1966). 

One attack on question (3) led to a time-reversible integrator (Miller 
& Prendergast 1968), that would today be called symplectic. It gives a bit 
of confidence in integration methods, but it does not provide a completely 
satisfactory answer. Its main use turned out to be in problems with large N, 
such as in the studies of galactic dynamics to be reported later in this talk. 
Question (3) was put to numerical analysts (Miller 1974), but I know of no 
answers apart  from suggestions to average over an ensemble of experiments 
(Miller 1967; Smith 1979). 

I 've run a few additional checks since then, some of which have been 
published (see, e.g., Miller 1971a, 1971b), others not. A study of the dimen- 
sionality of the locally expanding and contracting subspaces along the actual 
trajectory of an N-body system was the most interesting of the unpublished 
studies. 

Perturbation equations for the growth of separation take the form 

= M ~ ,  (1) 

where ~ is a 6N-vector of differences of momenta and of coordinates, and 
M is a 6N x 6N matr ix  in the space of the ( ' s  (Miller 1971a, 1974). If the 
unperturbed problem is written in cartesian coordinates, the matr ix M is, 

M = ,n (2) 
grad F)  0 ' 

where 0 and I denote 3N x 3N block matrices of all zeroes or the identity, 
m is the mass of a particle (here taken all equal), and (grad F)  denotes the 
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3N × 3N block matr ix  of force gradients. It is built up of 3 × 3 blocks, and 
each of those little blocks represents the tensor force gradient between two 
particles within the total configuration. The total matrix, (grad F) ,  is real 
symmetric, and its trace is zero. It is clear that a (3N-dimensional) rotation 
of the configuration space that  brings (grad F)  to diagonal form also rotates 
the momentum space, but the identity section of M remains diagonal. Thus 
the diagonal form (the eigenvalues) of (grad F)  gives a decomposition of the 
configuration space in the neighborhood of the actual particle configuration. 
The eigenvalues give instantaneous e-folding rates: they are akin to Lyapunov 
numbers. There are 3N of them and they sum to zero. The positive eigenval- 
ues span a subspace that  is locally expanding, and the negative eigenvalues 
span another (orthogonal) subspace that  is locally contracting. The number 
of dimensions of each of these subspaces is of interest. Because the individual 
3 × 3 blocks have an eigenvalue pattern of ( + 2 , - 1 , - 1 ) ,  we expect about 
twice as many negative eigenvalues as positive. 

The experiments mentioned consisted of studying the eigenvalues of 
(grad F)  as an N-body  calculation proceeded. The number of positive and 
negative eigenvalues changes as the integration proceeds, always keeping 
about twice as many negative eigenvalues as positive. But the change is the 
important  feature. An Anosov system retains the s a m e  number of dimen- 
sions in the expanding and contracting (and neutral) subspaces throughout 
the available configuration space. The gravitational N-body system has thus 
been demonstrated n o t  to be an Anosov system. (Anosov systems are called 
C-systems by Arnold ~z Avez 1968.) 

A second test was to check the e-folding rate in a 60,000-body problem. 
It showed a growth rate of a few e-foldings per crossing time. But it was run 
with a grid code and softened particle interactions, and so is of limited value 
for the general problem of determining how e-folding rates depend on particle 
number. 

2 .  C o r e  M ot ions  

A galaxy's nucleus orbits around its mass centroid. Orbital motions are over- 
stable in numerical experiments started with the nucleus at rest atop its mass 
centroid. The amplitude doubles in 6 - 10 orbital periods. Orbits precess, nu- 
tare, and change their amplitudes, but they keep fairly constant periods. 
Amplitudes reach a core radius. Orbital periods are in resonance with lo- 
cal particle motions, indicating that  center motions are a local, rather than 
a global, phenomenon. The overstability implies that a galaxy cannot be 
formed in Nature with its nucleus at rest atop its mass centroid, and that 
nuclei orbit the mass centroid in real galaxies. A fuller report of this work has 
been published elsewhere (Miller & Smith 1988, 1992), and these references 
should be consulted for additional details. A videotape showing dynamical 
developments accompanies the 1992 reference. 
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Motions of galactic nuclei with respect to their mass centroids were dis- 
covered in numerical experiments with a disk embedded in an axisymmetric  
galaxy. The evolution of a disk inclined relative to the symmet ry  axis of an 
oblate galaxy was being studied with the goal of determining the long-time 
integrity of the disk. Center motions became apparent  on a new graphics 
display. Disk particles near the center were moving about  in an unexpected 
manner.  They move as a more or less coherent batch; a little patch of the 
innermost disk particles remains reasonably planar throughout the experi- 
ment.  The normal  to that  plane gyrates smoothly with epicyclic motion and 
nutat ion superposed atop a basic precession. The motions are very complex. 
Epicyclic motions and nutat ion might have been expected, but the patch 
builds up an orbital  motion as well, and that  orbital motion was not ex- 
pected. 

A particle initially at rest at the center of a galaxy starts to oscillate, and 
its ampli tude continues to grow thereafter. Tha t  particle is not alone. It  is part  
of a density wave tha t  builds up as many  particles join a group that  moves 
together in the local (harmonic) potential  of the galaxy. Other particles move 
with it, and motions of the collective mass cause (time-varying) distortions 
to the (local) gravitat ional  potential  down near the galaxy's  center. These 
distortions sweep up more stars in the neighborhood and, in turn, the added 
mass of those addit ional stars generates a larger distortion of the potential. 
Distortions of the potential  field are amplified as more and more mass gets 
swept up in the motion.  Tha t  drives overstable motions. The ampli tude dou- 
bles in about  6 - 10 cycles of the basic oscillation. In three dimensions, the 
orbital  ampli tude grows and the center follows a rather complicated trajec- 
tory. These center motions are a physical effect, and their growth indicates 
an overstabili ty (or instability). 

The match  of periods of center motions with orbital periods suggests 
that  center motions are resonant and are a local phenomenon. They are not 
global motions in which the whole galaxy rings in a normal  mode. The growth 
terminates  when ampli tudes get large enough to explore regions where the 
basic potential  of the underlying galaxy is no longer harmonic. 

Galaxies whose nuclei are off-center with respect to neighboring isophotes 
provide observational evidence for center motions. Nearly every galaxy that  
has been studied carefully enough to show the effect has a nucleus that  is 
off center, usually by a few arcseconds. Several examples are discussed in 
Miller & Smith (1992), and we have found a few more since that  paper  was 
published. Again, the reader is referred to that  paper for more detail. 

The overstability (instability) implies that  a galaxy could not exist in 
Nature with its nucleus at rest a top its mass centroid. I t  could never have been 
formed that  way in the first place because that  condition is unstable. High 
sensitivity (reasonable signal-to-noise ratio) made it possible to discover that  
the s tandard initial condition for numerical experiments, with the nucleus at 
rest at the mass centroid, is unstable. 
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Galaxies in experiments do, however, develop into stable systems that 
are capable of representing real galaxies. Their stability is demonstrated by 
the fact that  they survive for reasonably long times. Fortunately, they are 
not terribly different from the starting models-- they differ by the orbiting 
nucleus. The process by which galaxies form can hardly be gentle, so it is 
difficult to imagine that a real galaxy in Nature could reach a quiet state in 
which its nucleus remains centered. 

Central regions of galaxies and of star clusters are almost certainly not in 
a static steady state. Most observational inferences about the nuclear regions 
of a galaxy (amount and distribution of mass, velocity fields, and so on) are 
tacitly based on the idea that  the region is in a static steady state. Many of 
these conclusions are shaky if the nuclear regions are sloshing about. 

3. Global  Chaotic  Oscil lations 

The center motions described in the previous section are local disturbances, 
but they demonstrate that the global smoothed gravitational potential changes 
with time. It is not static. We next question whether there are global distur- 
bances as well. It turns out that  there are, and that they can have surprisingly 
large amplitudes. This means that  galactic potentials show even more impor- 
tant temporal  variations. 

3.1 Oscil lations in the Total Kinetic  Energy 

Pulsations in the total kinetic energy provide the most direct manifestation of 
galactic oscillations. Large amplitudes are evident in Fig. 2, which shows the 
time dependence of the total kinetic energy within a spherical galaxy model, 
our experiment 13. The peak-to-peak variation in kinetic energy is 22% of 
the mean; rms variations are 8%. A crossing time Tcr = 25 of the units on 
the abscissa. The kinetic energy oscillates with period 83. No decrease in 
amplitude can be seen in the plot, over some 15 full cycles of the oscillation. 
This is about 51Tcr (5 billion years for a typical galaxy); the experiment was 
later extended for another 10Tcr, still with no change in oscillation amplitude. 
The upper track shows the total potential energy with its sign reversed. 

Total energy is conserved to within 0.05% over the duration of this exper- 
iment (and of all the experiments of this sequence). Total potential energy 
and total kinetic energy change together to leave the sum conserved. 

The plot i n Fig. 2 is remarkable. Wiggles in this curve would be expected 
to damp out to a constant value (due to phase mixing or to violent relaxation) 
within a few cycles according to conventional theory, but these oscillations 
continue for long times. Their amplitude is too large and their period is 
too stable for these wiggles to represent random fluctuations of the kinetic 
energy. This result is consistent with the virial theorem, which does not rule 
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Fig. 2. Total kinetic energy (lower track) and potential energy (upper track; sign 
reversed) vs. time for experiment 13 

out periodic variations with large amplitude. It only makes statements about 
time averages. 

Further, there are some peculiar symmetries, such as the reflection sym- 
metries around times 350, 800, and 980. Some characteristics of this plot 
suggest chaos, as do similar plots with variable stars (Perdang 1985). 

Plots of total kinetic energy for additional experiments of the same se- 
quence show continuing oscillations with equally large amplitude. The time 
variation is more nearly sinusoidal, lacking the peculiar features suggestive 
of chaos in Fig. 2. 

The envelope of oscillations from these experiments is quite uniform. No 
damping can be seen over 50 - 60 crossing times. Damping by 5% could be 
seen; we can set an upper limit on the order of 0.1% per crossing time for 
either experiment, whatever the cause of damping. Landau damping is one 
possible cause, and mode-mode coupling is another. If present, the effect of 
either must be very weak. The oscillation amplitude is independent of parti- 
cle number. It is still pret ty clean, and it continues to show no appreciable 
damping, with as few as 10 000 particles. Most experiments in the sequence 
were run with 400 000 particles. 

This plot clearly demonstrates persistent oscillations with surprisingly 
large amplitudes and with no detectable change in amplitude over the dura- 
tion of the experiment. The important  result of this investigation is evident 
from this plot alone. Experiment 13 represents a breakthrough because of the 
large amplitude. Other properties stand out clearly above the noise as well, 
so it is a good case to study. 
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Fig. 3. Lagrangian radii vs. time for experiment 13 

We turn next to additional manifestations of the oscillations and to studies 
of some of their properties, to clarify their nature. 

3.2 L a g r a n g i a n  R a d i i  

Vibrations in Lagrangian radii provide a second manifestation of galactic 
oscillations. A Lagrangian radius is the radius of a sphere, centered on the 
mass centroid, that  contains a certain fraction of the total mass. Temporal 
variations in several different Lagrangian radii in experiment 13 are shown in 
Fig. 3. Counting from the bottom, the tracks show radii that enclose 1/16, 
1/8, 1/4, 3/8, 1/2, and 5/8 of the total mass. The top track (outermost 
of tabulated Lagrangian radii) is similar to that of the kinetic energy (but 
inverted). It has 15 full cycles during the experiment, and a period of 83 time 
units. The bot tom track (innermost Lagrangian radius) oscillates at higher 
frequency--34 full cycles during the experiment, for a period of 38 time units. 
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A curious feature evident in Fig. 3 is the large number of times when 
all the Lagrangian radii have simultaneous m a x i m a  or minima. Simultaneous 
m a x i m a  are marked by vertical solid lines in Fig. 3, while simultaneous min- 
ima  are marked by vertical dashed lines. These come in an equally curious 
sequence-- two solid lines, then two dashed lines, and so o n - - a n d  suddenly 
3 solid lines. Nearly a pat tern,  but  not quite. Between the solid or dashed 
lines are t imes when m a x i m a  on the inside (bo t tom of the plot) turn into 
min ima  at the outside (top of the plot) and vice versa. Smooth progressive 
changes fl'om a m a x i m u m  to a min imum can be followed as you scan up or 
down through the tracks. 

Simultaneous m ax i m a  or min ima suggest modes. Waves (or wave packets) 
travelling inward or outward would give sloping lines connecting m a x i m a  or 
minima.  Vertical lines imply infinite phase velocity, which indicates standing 
waves or modes. If  so, two different modes are present- -one with period 
38 tha t  dominates  near the center and another with period around 83 that  
dominates  the outer regions. The two oscillations do not have the low-order 
commensurabi l i ty  that  the large number  of simultaneous max ima  or min ima 
seem to imply, another  property that  suggests chaos. 

3 . 3  M o d e s  

Two dominant  forms of disturbance are apparent  from the results presented 
so far. Both are spherically symmetrical .  Both act like normal  modes, so we 
call them modes. The first mode has no nodes and the second mode has one. 
The first is a "breathing mode",  an homologous expansion or contraction of 
the entire galaxy. It  produces most  of the ampli tude in the total  kinetic energy 
plots (Fig. 2). We refer to it as the fundamental  mode. The second, that  with 
the radial node, is more interesting. We refer to it as the "second radial 
mode".  H~non (1973) reported this mode some years ago, but he identified 
it as unstable. While it may  have been genuinely unstable in his models, it 
is also possible tha t  he saw oscillations build up in a stable mode. 

The period of the fundamental  mode is in good agreement (scatter of 
-4-0.4%) with values calculated from the virial equations. 

Several other modes showed up as well, but  they are much weaker. One 
has ~ = 2 and m = 0. The galaxy oscillates between oblate and prolate 
forms in this mode. I t  has a period near 46 - 47T in experiment 13. An 

= 1 oscillation with a period around 71T is also present in experiment 
13. I ts  period is distinct f rom that  of any of the other disturbances found in 
tha t  experiment.  We looked for other forms of disturbance as well, but  with 
less success. A search for pat terns described by spherical harmonics through 

= 6, m = 6 showed nothing above the noise, but this search is expensive 
and it was pursued only over a short segment of one experiment.  

It  is not trivially obvious that  a self-gravitating particle system should 
show normal  modes, but these disturbances act like normal  modes. The re- 
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sults presented here appear to be the first clear-cut experimental evidence 
for normal mode oscillations in stable particle systems. 

Modal amplitudes are much larger than predicted by arguments from 
statistical mechanics and equipartition, according to which the energy in 
each mode should be about the average kinetic energy per particle. 

The two spherically symmetrical disturbances were confirmed by a sep- 
arate experiment that  was constrained to remain spherically symmetrical. 
Pseudoparticles are spherical shells in this experiment, which is a kind of 
N-body calculation that has been used many times (see, e.g., Hdnon 1968, 
1973). Both disturbances were evident in the results, with the same periods, 
but the second radial mode was even stronger. This experiment confirms that 
the disturbances are rea l - - tha t  they are not simply a feature produced by 
the experimental method. 

3.4 Other Propert ies  o f  Oscillating Galaxies 

3.4.1 Modal  Structures  

There is enough signal in these experiments that we have been able to study 
Lagrangian displacements. These are changes in Lagrangian radii, the ana- 
logue of displacements in fluid dynamics. These displacements show the spa- 
tial structures of the fundamental and second modes. Displacements increase 
linearly with radius in the fundamental mode, while they have a node in the 
second mode. 

3.4.2 Partic le  Orbits 

Orbits of individual particles have been studied as well. Histograms of mea- 
sured orbital periods show no unusual features near the periods of modes or 
of their harmonics. 

An interesting property of individual particle orbits is that  no orbit re- 
mained inside the radius of the node in the second radial mode over the 
duration of the experiment. Every particle ventured outside that  radius re- 
peatedly. This result was unexpected so we studied it more carefully, and 
found that large outer turning point radii are caused by interactions between 
the second radial mode and individual particle orbits. Some particles would 
be on regular orbits with small outer turning point radii in the absence of any 
modal disturbance, but  they go chaotic if the amplitude of the second radial 
mode is large enough (it is in these experiments). And the chaotic form has 
much larger outer turning point radii. 

3.4.3 Non-Sel f -Consis tent  Experiment  

Self-excited oscillations require some kind of feedback mechanism. The normal- 
mode oscillations reported here were shown to require a feedback loop to 
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sustain them by means of a separate, non self-consistent, experiment. Oscil- 
lations decay as expected in this experiment. Kinetic energy oscillations are 
gone by 32Tcr. Distributions of orbital and epicyelic periods for individual 
stars are similar to those of experiment 13. Again, there are no peaks or dips 
in the distribution near the periods of known modes. 

This experiment demonstrates that  the oscillations are maintained by 
feedback through the self-consistent gravitational potential. An interplay be- 
tween the particle motions and the self-consistent potential sustains the os- 
cillations. 

3.4 .4  D o  Osc i l l a t i ons  G r o w  S p o n t a n e o u s l y ?  

A question that  is important  to fundamental understanding of the dynam- 
ics of galaxies is whether oscillations are left over from initial conditions or 
grew spontaneously. The question is not terribly important  astronomically 
since observational tests cannot distinguish one case from the other, but it is 
important  to fundamental  understanding. 

~¥e have seen examples of both in our experiments. Experiments like 13 
and others of its sequence had large amplitude oscillations that  clearly were 
left over from initial conditions, while in some others, experiments for which 
we had taken some pains to establish very quiet initial conditions, oscillations 
grew out of the noise. Oscillations that  grew out of the noise seldom reached 
the large amplitudes shown in Fig. 2. 

On the other hand, some experiments in the sequence of experiment 
13 were started from carefully designed initial conditions that should have 
been steady-state equilibria as defined through the Vlasov equation. The fact 
that  those systems showed large amplitude oscillations (mostly fundamental 
mode) clearly indicates that the experimental systems do not fit the design. 
They preferred to oscillate about a nearby robust stable equilibrium instead. 
The problem of finding that nearby robust stable equilibrium analytically is 
challenging, and is not yet fully appreciated. 

This demonstrates that  the design of equilibrium starting conditions is 
a much more delicate process than had been assumed. It also shows a new 
aspect to experimental stability studies: they system you had in mind might 
be unstable, but  there could be a nearby stable system that is the condition 
that  is actually tested experimentally. 

3.5 O b s e r v a t i o n a l  C o n s e q u e n c e s  

Normal mode oscillations ("ringing") in galaxies can cause observable effects 
even though their periods are too long (100-300  Myr) for direct observation. 
Ringing brings new features into the interpretation of observations. Galaxies 
that  would otherwise be considered to be in a steady state actually support 
radial flows. Bulges in spiral galaxies might be a manifestation of normal 
mode oscillations. 
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The effects of oscillations are most  prominent  in spiral gMaxies. Most of 
the mass of the galaxy is presumed to be dark matter ,  and the luminous 
mater ial  in a spiral galaxy is pret ty  much confined to a disk (or to a sheet) 
within the gravitat ional  potential  produced by that  dark matter .  The dark 
mat te r  "halo" is nearly spherical, and the experimental  results reported here 
apply to it. It  is the thing that  is oscillating. Luminous material  in the disk 
moves radially in response to driving from those oscillations as it orbits within 
the basic potential.  

3.5.1 Kinemat i c  Warps 

The fundamental  mode produces flows that  are inward during one half-cycle 
of the oscillation, outward in the next. Combined with the usual rotation 
within a flat disk, the resulting projected velocity map  would be interpreted 
as indicating a kinematic warp. Flows in the second radial mode would be 
interpreted as oval distortions. This interpretation of kinematic warps differs 
substantially f rom the conventional twisted-rings picture. Radial flows are 
forbidden in the usual picture of steady state (time independent) potentials, 
but  such flows are present in an oscillating system. Neutral hydrogen in the 
interstellar med ium moves with the fluid dynamical  flow indicated by the 
Lagrangian displacements. 

Flow velocities in the fundamental  mode are large enough to produce 
appreciable distortion of the velocity field as seen in 21-cm H I observations 
and they would combine with the circular motion to be interpreted as a 
kinematic warp in a map  of the velocity field. This flow pat tern leads quite 
natural ly to simple symmetr ies  in velocity fields, which would be interpreted 
as the "hat -br im" warps so common in galaxies. No extra considerations are 
required to keep them from becoming extremely convoluted, a problem that  
has always plagued the warp business. 

Flows in the second radial mode change sign with radius as well as with 
the phase of the oscillation. At any instant, they would generate an apparent 
"warp" tha t  deviates in one sense from purely circular motion in the inner 
parts  of a galaxy, while deviating in the opposite sense farther out. That  is 
the signature of an oval distortion. 

We are studying kinematic warps and oval distortions in more detail to 
see how they relate to normal  mode oscillations. We stress that  this picture 
does not help with those warps that  are directly observed, such as those 
seen in edge-on systems and in our own Galaxy. But the picture applies even 
there: radial inflows and outflows may  accompany true geometric warps as 
well. And the modal  picture does not help to explain why directly observed 
warps are not convoluted. 
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3.5.2 Bulges 

It is tempting to associate bulges in early-type spiral galaxies with the second 
radial mode. The bulge would result from star formation as a consequence 
of compression of the normal interstellar medium within the galaxy at times 
when the phase of that  oscillation produces large central densities. It would 
largely be confined to regions interior to the node. Since the period of the 
second mode oscillation is on the order of 100 Myr, hot gases could cool, 
leading to star formation. Most bulges would be observed in stars with ages 
in that  range, but a few might show younger stars. 

This fits some of the observed properties of bulges. Their brightness would 
drop off very rapidly with increasing distance, soon becoming lost in the 
disk, and appearing consistent with a de Vaucouleurs profile. Bulges would 
be highly variable from one galaxy to another, both with respect to length 
scales and to total brightness, even within a given Hubble type. They might 
be associated with decreased H I emission and with hot gas in the central 
regions. Their  prominence would depend on the amplitude of the second 
mode oscillation, which can be quite different from galaxy to galaxy. Since 
bulges would be formed of material gathered from the galactic disk, they 
would partake of the parent galaxy's rotation or, perhaps, even rotate a bit 
faster to conserve angular momentum. They would rotate rapidly, rather than 
slowly like elliptical galaxies. This fits the observations. 

3.5.3 N o r m a l  M o d e s  

Bulges and kinematic warps might be taken as evidence for normal mode 
oscillations within galaxies. This merely turns the conjectures of the two pre- 
vious subsections around. Any galaxy that  displays either of these effects is 
presumed to be ringing. If so, the "halos" supporting most spiral galaxies are 
oscillating. The dark mat ter  "halos" must be of a dynamical form that sup- 
ports reasonably large-amplitude oscillations. This provides extra constraints 
on dynamical models for those halos. 

3.6 Concluding Remarks 

Oscillations in galaxies are a new research topic. They were a puzzle that  we 
had to track down. We were able to find and to study them because (1) noise 
was reduced by use of reasonably large numbers of particles and (2) we found 
a model that  supports very large oscillation amplitudes. We concentrated on 
nonrotating spherical galaxies to simplify both the experimental tools needed 
and the ease of understanding and interpreting results. 

Preliminary reports on this work have already been published (Miller 
1991, 1992a). A fuller report has been submitted to Celestial Mechanics and 
Dynamical Astronomy. 
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A b s t r a c t .  The problem of the study of N-body gravitating systems is 
considered from the point of view of the relevance of the computer-created 
model with the physical one. It is shown that due to the discontinuity of the 
Lyapunov characteristic exponents their numerical calculations cannot be a 
proper method of studying the instability properties of the system. This fact 
occurs both for systems with softened (independent on the way of softening) 
and, what is more interesting, even for unsoftened (i.e., pure Newtonian) 
potential. 

1 .  In troduct ion  

For a long time now computer simulations have been one of the important  
areas of study of the classical problem of N-body gravitating systems. Nu- 
merous studies have been performed to simulate different aspects of evolution 
and structure of galaxies and star clusters. Both the number of those studies 
and their quantitative characteristics (number of test particles and/or  itera- 
tions, etc.) are subject to increase, proportionally to the possibilities of the 
developing computer technique. 

During these studies, often without discussion and even without mention- 
ing, a fundamental assumption is being adopted as a quite natural one: the 
computer created system is the appropriate counterpart of the real system, 
i.e. the physical system is the limit of the modelled one at smooth change 
of parameters. Evidently the validity of this assumption, in general, depends 
not only on the system and the methods of numerical simulations but also 
on the aims of the study: if in certain cases the computer distortion of the 
system does not influence at least the main qualitative results, one can have 
situations when it happens. 

Recent new activity of computer studies concerns the instability proper- 
ties of N-body gravitating systems. The importance of the topic is doubtless, 
especially now, after the proof of exponential instability of spherical N-body 
systems [1], and the evidence of radical consequences it can have on the basics 
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of the dynamics of stellar systems. The validity of the mentioned assumption 
in this case becomes more crucial, since it is closely related with fundamental 
concepts such as s tabi l i ty  and continuity. Clearly in its general formulation 
the problem has even a somewhat philosophical context and comes to the 
relevance of a computer image with reality. 

Here we confine ourselves to considering the correspondence of computer 
studies of instability properties of N-body systems, particularly by means 
of widely used criteria, to those of physical systems. We approach to this 
problem from the concepts of theory of dynamical systems, enabling us to 
arrive to general conclusions, valid for d-dimensional Hamiltonian systems 
with any potential. Our conclusions do not seem to be quite expected and 
have even some dramatic shade. In particular, we show that the calculations of 
Lyapunov exponents for N-body  systems with softened and even unsoftened 
(!) potential  can have no relation to the properties of the corresponding real 
system. 

2 .  I s  t h e  f u n c t i o n  4i c o n t i n u o u s ?  

Consider a smooth d-dimensionM manifold M, with given (r-field of measur- 
able sets B(M) and complete measure P (P(M) = 1). Let f t  be a group of 
diffeomorphisms on M with continuous t E i~ (or discrete t E Z) time: 

ft : M ~ M ,  f0 = id ,  fs+t = f, oft , (1) 

for arbi trary times t, s. Then we will call (M, B(M), P, f )  a dynamical sys- 
tem with continuous (or discrete) time. The dynamical system is measure 
preserving if 

P(f tA)=P(A) ,  VAEB(M),  Vt E ~ .  (2) 

Denote by 7) the space of all dynamical systems (M, B(M), P, f) with appro- 
priate topology. Define the function • on 7): 

• : V -* ~ .  (3) 

Well known examples of such functions are Kolmogorov-Sinai (KS)-entropy 
and Lyapunov mean characteristic exponents: 

=[Ai(x)P(dx),  i =  1 , . . . , q  , (4) Ai 

M 

where Ai(x) are Lyapunov characteristic exponents and 

~1 > A2 > - . .  > ;~q. (5) 

Now we argue the crucial role of the following question: Is • a continuous 
function? At first sight the answer to this question does not seem to be 
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of much interest, since when one deals with a given dynamical system the 
behaviour of a certain function for different systems is not important.  

It is undoubtedly so for analytical methods, while for computer studies 
this point can become of extreme importance. Let us illustrate this idea by 
the following example. Consider the manifold 

M = S 1 : R1/Z -= {0 [0 < 0 < 1} (6) 

with given Lebesgue measure P(S  1) =- 1, and class of dynamical systems 

s 1 s l :  0 H {0 + (7) 

where the brackets denote fractional part. Define • in the following way: 

1 f~ is ergodic, 
~( f~)  - # ( ~ ) - -  0 f~ is not ergodic. (8) 

Evidently f~ is ergodic when a is an irrational number, and is non-ergodic 
when c~ is rational, i.e. 

1 a is irrational, 
• (a) = 0 a is rational. (9) 

Now if one tries to evaluate ~ (v~) ,  one finds out whether the dynamical 
system f ~  is ergodic or not, say, via looking for the periodicity of orbits. 
Since the computer  cannot deal with irrational numbers one is forced to study 
the following sequence of dynamical systems {fc,.} where art's are rational 
numbers for any n and 

lim an = V~ .  (10) 
n - -+  I:X) 

One may expect the following result 

~ ( v ~ )  = lira ~5(~n) = 0 ,  (11) 

though real value of 25(V~) is 1. So 

Computer  image of fv~ ¢ Real image of fv~" 

Therefore one can never figure out by computer methods O(a) when a is 
irrational. This example clearly shows what in fact happens when one tries 
to study a dynamical system by computer.  

In a typical case one is forced to consider not the diffeomorphisms f t  but 

f: = f '  + (12) 

because of the inevitable computing errors v(t) arising at truncation of num- 
bers. As a result when • is not a continuous function all numerical calcu- 
lations can completely lose their meaning, i.e. computer 's  ~c(f) does not 
coincide with real one ~ ( f ) .  
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In some cases such a situation can arise as a result of deliberate change 
of the behaviour of f to avoid "naughty" functions, as it just happens at 
"softening" of Newtonian potential. 

Thus we arrive to the following two questions reflecting both fundamental  
properties of function ~: 

S. Is ~(¢) close to its computer  image ~c(¢) (Stability)? 
C. Is ~(0) the limit of ~(¢) as c (bifurcation parameter)  tends to zero (Con- 

tinuity)? 

As a representation of particular interest of • we shall consider Lyapunov 
characteristic exponents. First, recall the following quite remarkable results: 

la. According to Ma~d's theorem (see [2]) when M is a compact surface, 
C 1 area-preserving non-Anosov diffeomorphisms, all of whose Lyapunov 
exponents are equal to zero Lebesgue almost everywhere, are everywhere 
dense; 

lb.  In general, Lyapunov exponents are discontinuous functions of a bifurca- 
tion parameter [3]; 

lc. Topological entropy is proved to be discontinuous for d i m M  ~ 4 [4]. 

We see that  Lyapunov exponents can be highly discontinuous. The exam- 
ple considered above can be an illustration of this typical property of function 
• . On the other hand one has the properties: 

2a. Topological entropy is continuous at dim M = 2 [4]; 
2b. For some dynamical systems it is proved that Lyapunov exponents are 

upper- continuous [5]; 
2c. Though typically Lyapunov exponents are highly discontinuous, there ex- 

ists regular family of perturbations fulfilling conditions discussed in [2] 
making them stable. 

We see that  while the properties 1(a-c) make doubtful the usefulness for 
computat ions of Lyapunov exponents the 2(a-c) ones leave some hope. What  
is evident is the necessity of thorough consideration of this problem in any 
given particular case. 

3. N-Body  Systems 

In view of the results described above let us turn to our problem of the 
stability in the case of N-body  system. First remind tha t  the trajectories of 
Hamil tonian system 

1 
H(p, q) = ~g~' P~tPz, + V(q) (13) 

in the region of configuration space 
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Q -- {q IV(q) < E } ,  

can be represented as geodesics of Q with Riemannian metric 

G = [ E -  V ( q ) ] g -  W g ,  

and af[ine parameter  s: 

ds = v /2Wdt .  

(14) 

(15) 

(16) 

It is also well known that the stability properties of trajectories can be de- 
termined by the behaviour of Riemann (Riem), Ricci (Ric) and scalar (R) 
curvatures. Indeed, Jacobi equation 

V u V u n  + Riem(n, u )u  = 0 ,  (17) 

where V is the Levi-Civita connection of the metric G, vectors u and n de- 
note the velocity on geodesics and their deviation, shows that behaviour of 
deviation vector n depends on the Riemannian tensor Riem. Therefore, the 
problem of continuity of Lyapunov exponents is reduced to the study of the 
continuity of Riemannian tensor; particularly the latter is not continuous if 
the scalar curvature R is discontinuous. So the problem comes to the inves- 
tigation of i n s t a b i l i t y  m e a n  i n d e x  .~2 _ a measure of average (in space) 
instability for the d-dimensional Hamiltonian system: 

2 R W  2 2 A W  ( ~  3 ) , , d W , [  2 
A2 ~- d ( d -  1------~ - ~ -  + - - - - W '  (18) 

where the time reparametrization is made and 

02 W OW OW 
A W  = guv OqgOq--------7, ildWll2 = gU~ Oqg Oq ~ (19) 

This quantity is just connected with those Lyapunov exponents which are 
being obtained during computer calculations. 

In the case of N-body gravitating system one has d = 3N and 

N a - 1  

V(q) = - E E GMa:~Ib!P(rab) , 
a= i  b=i  (20) 

2 rab ____ ( r lb)2  + (r2b)2 + (r3b)2 , ra  b i  = rai _ r~ 

where the function W is not specified yet. Then one has 

gvv=MvS uv ,  t t = ( a , i ) ,  
i (21) 

~1~ v ~--- 6 a b ~ i j  , Mu = M a ,  qg =-- r a 

where a = 1 , . . . ,  N and i = 1 , . . . ,  3. Calculating the instability mean index, 
taking into account that  



156 V.G. GURZADYAN & A.A. KOCHARYAN 

N N 

W -~ EN 2~/lfalPal 2 , A W = E  E VMcr2(r2c~t(rac))t 
a--1  a----1 c=l,c~a 

I l d W [ I  ~ _ -  EG2Ma Mop'(rat) riac _- IF,,I  ~ 

a = l  i=1  \c=l,c~a rac / a = l  ga ' 

one has 

(22) 

N N 
2 A1 : -~  E E GM~r-~2'r2 " r  "" ~ (a¢ ) )  , 

A 2 = A1 + A2 , a=l c=l,c~a (23) 

A2 = (~ - 1 )  i 'Fa'2 / i  'Pa'2 
a--1  - ~ a  a--1 2Ma 

where the following notations are used 

Irol = (Fa ) + ( C )  + (ra ) , 

N (24) 
Fia= E Fief- E GMa~[c~t(rac)r'iac " 

rac c=l,c¢a c=l,c¢a 
Now consider a class of potentials ~(~) containing the two main cases: 

1. Newtonian potential  (~ = 0): ~(r)  = 1 / r .  (25) 

2. Softened Newtonian potential  (c • 0): ~(r,  v) = 1 /x /~ r  2 + ~2. (26) 

Let us look for the behaviour of ~ when both r and c are close to zero, i.e. 
for the continuity of mean index in physically most interesting case. For this 
purpose one has to obtain the following limits 

lim lim A 2 (r, c) = - o c  lim lim A 2 (r, s) = + o c .  (27) 
e---~O r---*O ' ~ ' ~ 0  ~--+O 

When c -- 0, i.e., in the case of unsoftened potential, the mean index is 
determined by A2 and the system is exponentially unstable, since 

~ 2 ~ r - 3  a s  r ~ 0 .  (28) 

This limit corresponds to the close encounter of at least two particles. 
The same limit when s ¢ 0, for softened potential  reveals completely 

different behaviour: the mean index is a complex number, 

A 2 ~ _ ~ - 3  as ¢ - - ~ 0 ,  (29) 

since it is determined by first member  A1; as a result the system is not 
unstable any more. 

We see that  the mean instability index and hence Lyapunov exponents in 
the case of unsoftened potential  are discontinuous 

lim A~ ¢ Ao. (30) 
e---~ 0 
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Moreover the unsoftened system has quite different behaviour, particularly 
in accord to point 2b of Sect. 2, it is more stable than the original Newtonian 
system. 

Qualitatively similar situation is in the case of other perturbed potential 

1 
- - - .  (31) = 

Note that  dependence of the growth of initial errors on the parameter of 
softening has been noticed also during computer simulations in [6]. 

4 .  C o n c l u s i o n  

Thus the calculations of Lyapunov exponents by means of computer meth- 
ods for N-body systems can hardly lead to any meaningful results. Already 
this fact is enough to seriously influence the interpretation of the results of 
computer studies of instability of softened systems having originated from 
pioneering paper [7]; see [8] in a way summarising previous studies. Though 
we did not yet take into account the problems connected with the computer 
simulation of Lyapunov exponents involving at t --~ cx~. Other difficulties of 
those studies, particularly concerning the interpretation of relaxation driving 
effects, were outlined in [9]. 

However, the next conclusion of the present study is even more unex- 
pected: the principal impossibility of investigation of instability of not only 
disturbed, but even 1/r potential N-body systems on computers. 

These conclusions reflect the cost of inevitable distortion of a system at 
computer experiments - existence of principal limitations on the obtained 
information, situation quite familiar from those of quantum mechanical mea- 
surements. 
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A b s t r a c t .  Numerical experiments have been performed with 340-body 
equal-mass systems having a central point mass. The results indicate that the 
exponential growth of perturbations in position is partly caused by the "grain- 
iness" of the particle distribution, but part is associated with the smooth field 
of the particles. 

1. Introduct ion  

Miller (1964) was the first to show that,  if one perturbs the initial positions of 
particles in a self-gravitating N-body system, the distance in 6N-dimensional 
phase space between the perturbed and unperturbed systems grows exponen- 
tially with time. Indeed, the perturbation in position for individual particles 
typically, though not always, grows exponentially. In earlier work (Kandrup 
~z Smith 1991, 1992) the mean e-folding timescale for the growth of the per- 
turbations in position was evaluated for self-gravitating systems and found to 
be somewhat less than the crossing time tcr, defined as 2Ro/vrms where R0 is 
the initial system radius and Vrms is the initial rms velocity of the particles. 

The purpose of the experiments described here was to study the approach 
to integrability in gravitating N-body systems, by introducing a fixed point 
mass at the center of the system and increasing its mass Mc relative to the 
total mass of the particles Mp up to a maximum ratio of 10. In the limit 
of infinite Mr, of course, the mean-field potential of the system would be 
integrable (Kepler potential). 

2. Numerica l  Exper iments  

The equations of motion for 340 equal-mass particles were numerically in- 
tegrated using a standard technique described elsewhere (Kandrup & Smith 
1991). The potential was the usual softened potential ¢ = Gmi/(r 2 + e2)½, 
most runs having e = 10 -s  in units of the initial radius R0 but a few having 



1 . 0 0 0  

0 . 9 9 0  

v 
r , f  

~, 0 .980 
'5  

0 

~o 0 . 9 7 0  

o 

0 . 9 6 0  

0 . 9 5 0  , , , p 

0 2 

The Approach to Integrability in N-Body Systems 159 

M c = 3 4 0 0 ,  Q o = l . 0 ,  ~ = 1 0  -8 

Fig. 1. Rank correla- 
tion of energy R(E) 

, , , I , , , I , , , vs. time t/tcr aver- 
4 6 8 aged over three exam- 

t/t~ ples with Mc = 10Mp 

e = 10 -1"5. The  central  point  mass  had values Me of  0, 0.5, 1, 3, 6, and 
10 t imes Mp. The  particles were r andomly  assigned posit ions with uni form 
probabi l i ty  density inside a sphere of radius R0. The  particles '  velocities were 
likewise selected r a n d o m l y  with uni form probabi l i ty  density, in mos t  cases 
with the same m a x i m u m  speed independent  of  locat ion but  in a few cases 
with a m a x i m u m  speed scaled to the local escape speed. All velocities were 
scaled so as to give a desired virial rat io Qo = 2EK/IEph with Q0 being 
uni ty  for mos t  exper iments  but  for a few having the value 0.5, giving rise to 
an initial contract ion.  

The  systems were each integrated for 4 or 8 initial crossing times tCr • For 
each initial configurat ion a small (~r0 = 2 × 10 -1°)  r andom per turba t ion  was 
added  to the posi t ion of  each particle and the resulting system integrated 
for the same t ime as the corresponding unper tu rbed  system. At intervals 
of  0.05 t~r (for the unper turbed  system) the posit ions and velocities of all 
particles were stored for later analysis. 

3. R e s u l t s  

From the stored ou tpu t  the deviat ions in position, velocity, and energy ((~ri, 
5vi, and 5Ei, respectively) were calculated for each particle in the sense (per- 
tu rbed  minus unper turbed) .  From these the total  deviat ions in those same 
quanti t ies  were computed ,  namely  A r  = 1 In ~ ( S r ~ ) ,  Av  = I In ~ (Sv~) ,  and 
AlE = ½ In ~ ( S E 2 ) .  Addit ionally,  the rank correlat ion for the particle tota l  
energy compared  to its initial value, defined as 
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R ( E )  = 1 N 3 - N E 6~ ' (1) 
i = 1  

was evaluated, where 6i is the difference in rank order of the energy values 
for the ith particle. R ( E )  is a measure of the degree to which the particle 
t Iamil tonian is t ime-independent.  

For the largest value of Me, namely 3400 (=  10Mp), R(E)  decreased only 
very slightly (see Fig. 1), indicating that  individual particle energies were very 
nearly conserved; in the limit they would be conserved exactly. IIowever, for 
this case (with Q0 = 1.0, e = 10 - s )  the perturbations in position still grow 
exponentially, as shown by the total  deviation At ;  the same is true for Av and 
A E  as well, as shown in Fig. 2. The growth rate is roughly a factor 3 smaller 
than for Mc = 0. Even the systems having e = 10 -1"5 exhibited exponential 
growth of the total  deviations. The growth saturates at later times, when the 
per turbat ion has grown to macroscopic size. 

The mean e-folding t ime t ,  in units of t~r is shown in Fig. 3 as a function 
of Me. While t ,  is increasing with Mc, as expected, it is not increasing as 
rapidly as one might  expect. Indeed, from the graph one might be tempted 
to infer tha t  it is asymptot ical ly  approaching a constant ,value. Eventually it 
must  become very large and the exponential growth disappears, but there is 
no sign of tha t  in the present data.  
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Fig .  3. Mean e-folding t ime t , / t c r  vs. central  mass Me. Dashed curve is for tgr only 
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4. D i s c u s s i o n  

The present experiments indicate that  exponential instability is persistent in 
typical particle orbits in gravitating N-body systems up to fairly large values 
of the ratio Mc/Mo, for which the potential is very nearly Keplerian. It has 
been argued (cf. e.g., Goodman, Heggie, & Hut 1993) that  the sensitivity 
in these orbits is entirely attributable to the "graininess" of the particle 
distribution, that  is, to the effects of nearby particles. However, if this were 
true, the e-folding timescale associated with those effects would be essentially 

3 x proportional to (Gm/b)-~,  where m is the particle mass and b is the typical 
near-neighbor separation. Since in these experiments m and b have not been 
varied when Mc has been changed, tgr should have the same value in physical 
units for all cases. Then, in units of tcr, tgr should be inversely proportional 
to t~r, which means that  it should be proportional to (Mp + 2.5M~)- ½. (The 
factor 2.5 appears because of the central concentration of the point mass 
compared to the distribution of the particles.) The dashed curve in Fig. 3 
corresponds to this relation; clearly it does not apply. Similar behavior of 
t./t~r with increasing Mc was found with the experiments having Q0 = 0.5. 

Consider the smoothed potential associated with the particles: it is almost 
certainly asymmetric on fairly large scales because of the finite N. It therefore 
seems likely that  this potential is non-integrable. If so, the perturbations 
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arising from the "graininess" will grow exponentially because of the smoothed 
potential. Pfenniger (1986) demonstrated a similar effect in a barred galaxy 
model into which was introduced a fixed perturbing mass; the perturbation 
in position grew exponentially (on average) at a rate independent of the 
mass of the perturber up to a fairly large (10 -2) mass ratio. If there are two 
exponentiating processes we might then expect that  

~r = ~r0-e  t/t• = ~r0"e  ~ t ' e  ~t , (2) 

where a = 1/tgr and/~ = 1/tsm, with tsm being the e-folding time appropriate 
to the effect of the smooth field. We would assume that  tsm is a constant 
in units of tcr, because the latter is the basic timescale appropriate to the 
smoothed field; let us call that  constant C. Then, after multiplying by tcr, 
we have 

tcr tcr 
D ~* -- ~gr + C-1  " (3) 

The solid curve in Fig. 3 is a graph of such a relation for C = 2.02; as may be 
seen it is a remarkably good fit to the data. The ratio of the two timescales, 
t~m/tgr, is approximately 4.5 when Mc = 0. A comparison of systems with a 
highly softened potential (in which the near-neighbor effects are presumably 
suppressed) with unsoftened systems, neither having a central point mass, 
reveals that  the mean e-folding time increases by roughly a factor of 3 (Kan- 
drup & Smith 1991); this fact implies that  the ratio of the two timescales is at 
least 2 (which must be a lower limit because the softening does not completely 
eliminate near-neighbor effects). Thus we conjecture that the stochasticity in 
N-body systems is largely, but not entirely, due to neighboring particles, 
this component diminishing smoothly in relative importance as Mc/Mp is in- 
creased; the remainder seems to be caused by asymmetries in the smoothed 
potential of the particles. 
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1. Introduction 

There is no doubt  that  to speak about  relaxation towards equilibrium in N-  
body self-gravitating systems is not an easy task. The difficulties are related, 
first of all, to the elusivity, in this context, of the very meaning of equilib- 
rium; consequently, one must  content oneself with the study of the processes 
through which the system forgets progressively some memory  of the initial 
conditions. So, one has not  to describe the relaxation to equilibrium, but, 
rather,  to trace several histories, the plots of which have different players 
performing on different time-scales. 

We surely know of two of these processes: the first one is the establish- 
ing of the dynamical  equilibrium; the second (but we could equally well say 
the last) corresponds to "something similar" to the approach to the canoni- 
cal equilibrium of statistical mechanics. It  is a common opinion [4],[5] that  in 
order to reach the dynamical  equilibrium (starting from an arbi trary initial 
bounded state) the system needs a t ime of the order of the crossing t ime 
(vc ..~ R#r ,  where R is a characteristic length scale and cr is the RMS ve- 
locity), whereas to reach equipartit ion of energy it needs a t ime of the order 
of N r c / l n N  (..~ 7"B, the binary relaxation time-scale). One more point of 
consensus is that  if a system tends to forget its initial conditions on a certain 
time-scale (say vs), it must  also display a chaotic behaviour, namely its dy- 
namics must  be extremely sensitive to small changes in initial condition. A 
fundamental  question is therefore the following: is rs  related to rc  or to r s  or 
to some other (eventually intermediate) time-scale? The main lines of think- 
ing on this topic are two: a)  vs ~ vc (a result obtained by Kandrup [15],[161,[17] 
and by Goodman,  Heggie & Hut[ TM, with different approaches and also with 
a different interpretat ion as far as the sources of instability); b )  rs N N1/3rc  
(Gurzadyan ~ Savvidy[13]). 
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The aims of the present contribution are to point out that  the relation- 
ships between the instability time-scale, as measured from the exponential 
divergence of trajectories, both from numerical integrations and from "aver- 
aged" analytical estimates, the mixing time, if it can be estimated in some 
way, and the "relaxation" time (when it is possible to speak about of one 
relaxation time) are in general highly non-trivial. 

So, a very cautious treatment of these concepts is needed in order to avoid 
some contradictions and misunderstandings, which, in our opinion are mainly 
due to some unjustified extrapolations and approximations made in (most of) 
the treatments presented in the last years. 

Clearly, the most self-consistent approach to the problem outlined above 
should be properly carried out in the framework of general Hamiltonian 
many-body dynamics, and this has already been done [211 for a class of many 
degrees of freedom Hamiltonians of interest mainly in solid state physics, and 
working in a slightly different manifold. The work along this line is going[rl,[s]; 
nevertheless our concern here is to point out that most of the conclusions 
drawn until now, concerning in particular the N-body self-gravitating prob- 
lem, should be analysed carefully, and that the contradictions between an- 
alytical estimates based on different approximations, and the results found 
by numerical simulations are due to a set of excessive simplifications of the 
geometro-dynamical quantities governing the evolution of perturbations, on 
one side; and also to an inadequate representation of the dynamics, on the 
other side. 

In particular, if we can observe that the semi-analytical estimate of the 
"collective relaxation time-scale", made by Gurzadyan & Savvidy [13], is based 
on some unrealistic schematizations, nevertheless, the general setting of the 
problem and the references to the rigorous results of ergodic theory are stated 
in a nearly correct way. 

On the other hand, it is also certainly true that  the time-scale of instability 
(i.e. of "exponential growth") of perturbations in a N-body self-gravitating 
systems is of the order of the crossing time, but, in principle, this is not 
necessarily related with any kind of relaxation, and in particular, with the 
mizing property of dynamical systems. 

2. Cross ing and Collective Relaxat ion Time-Scales  

To test the sensitivity of a system to changes in initial conditions the first 
simple approach is to compare the evolutions followed by the same system 
starting from a set of different, but very close, initial conditions: let us con- 
sider, for simplicity, two points in the 6N-dimensional phase space of the 
system and, choosing in some appropriate way a "distance" in the phase 
space, let us trace it in time as the two trajectories evolve from the initial 
points. If the system dynamics is sensitive to initial conditions, this distance 
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grows very fast (indeed at an exponential rate). The problem with this sim- 
ple approach is that  the two compared trajectories explore different regions 
of phase space with a very different structure [21] : stated in another way the 
problem is that  we have two distinct systems with no further knowledge of 
the fate of each other. A technique devised to overcome this difficulty is that 
of following the evolution of the perturbation to a reference system, namely 
to study the tangent dynamics: a version of this technique (due to Miller [2°]) 
is exploited by Goodman,  Heggie & Hut [12]. But, even with this approach, 
the same problem is encountered, since the solution of the variational equa- 
tions attains quickly a non-linear regime. Together with these troubles there 
is another question, common to both the above approaches, concerning the 
reliability of extrapolations of numerical results: with N .-~ 10 3 the mean 
and fluctuating fields are of comparable amplitude; so the techniques used, 
which are not able to disentangle the effects due to these distinct contri- 
butions, make predictions on the rate of instability that  are dominated by 
the more unstable bunch of degrees of freedom, which are not necessarily 
representative of the average behaviour of the whole system. In addition, 
there exists a much more awkward problem raised by the interpretations of 
numerical N-body simulations performed until now: if these were intended 
to estimate something like the Maximum Lyapunov exponent (MLE) of the 
dynamical system describing the model of a stellar system, it is very em- 
barrassing to remember that ,  even for systems with few degrees of freedom, 
the t ime of integration needed to obtain a reliable estimate of the MLE can 
be unimaginably long [21]'[9], whereas N-body simulations stop usually before 
ten crossing times. Again, even when accurately determined, the reciprocal 
of the MLE has in general no direct and obvious relation with the relaxation 
time-scale; but  on this point, at least, now it seems to exist a general con- 
sensus. On the other hand, the work of Gurzadyan & Savvidy [131 addressed 
from the very beginning to the role played by fluctuations in determining the 
instability; but, at the same time, underestimated the effect of the mean bulk 
field [15],[x6] and the peculiar structure of a realistic self-gravitating system, 
with its enormous density contrast and the strong anisotropy of the velocity 
distribution. On this basis, the averages performed in the configurations and 
velocity spaces are to be taken only as a first rough estimate of the instability 
growth rate. 

In the light of the above considerations it appears clear that  to devise a 
reliable technique for the description of the instability we need a tool suitable 
to describe the detailed evolution of the perturbation as a manifestation of 
a global instability. This tool is the Jacobi-Levi-Civita equation of geodesic 
deviation on the configuration manifold. 
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3. The  Jacobi -Lev i -Clv i ta  Equat ion of  Geodesic  
Deviat ion  

The framework in which we settle for the study of the long term behaviour of 
N-body systems is that  of exploiting the equivalence of the trajectories of a 
conservative Hamiltonian system and the geodesics of the Riemannian space 
with the corresponding Jacobi metric. Using the minimum action principle 
in the form given by Maupertuis and Jacobi, one can show [2],[14],[22] that the 
geodesic equation associated to the metric 

ds 2 = gab dq a da b =[E - Y(q)] ~ab dq a da b (1) 

( a , b - = l , . . . 3 N ;  yaby bc = ~ )  , 

Dua dua 
d ~  : ds + F~cubu~ = 0 ; (2) 

and whose explicit form for the velocity vector u a = dqa /ds  is 

du a 1 
d---~- + 2 ( E -  V )  (gab _ 2uau b) V,b = 0,  (3) 

where with D / d s  we indicated the covariant derivative of a vector field along 
the flow, coincides with the canonical equations with Hamiltonian function 

1 ab H = ~ l  PaPb + V(q) ~- Z ; (4) 

where E is the total energy of the system, V(q) is the potential energy, and 

qa _ V/--~X a ~ rrt3i-2 m3i-1 = m3i 

ri ~-- (x3i_2,~3i_1, x3i ) , i~-  1 , . . . , N .  (5) 

In this approach the stability properties of the dynamics are therefore de- 
scribed by the Jacobi-Levi-Civita (JLC) equation of geodesic deviation 

D2 5q a 
ds--- T -  + Rabcd~tb~qcu 4 -~ 0 , (6) 

where ~qa is the perturbation vector in the positions and Rabcd is the Riemann 
curvature tensor associated to gab. An equivalent form of the JLC is, more 
simply, 

D2/~q a 
ds 2 +~ac~qC = O, (7) 

where the stability matrix 

T~ac : Rabcd•bu d (8) 

has been introduced. The solutions of the JLC equation allow to predict the 
evolution of perturbations [21],[7],[s] and to identify the geometric properties of 
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the manifold related to the instability behaviour of the dynamics. One of the 
interesting and immediate results of this approach, when applied to the case 
of the dynamical ("violent") relaxation of self-gravitating N-body systems, 
consists in the possibility of identifying, in a completely analytical way, a 
transition in the global stability properties of the dynamics, at the onset of 
the virial equilibrium, put forward by a damping of the fluctuations of the 
trace of the stability matr ix  (about a positive definite average value) which, 
through the solutions of :ILC equation, indicates a transition towards a less 
unstable behaviour, at least on a global scale. 

In almost all preceding studies [13]'[15]'[16],[12],[21] the analysis was based on 
the study of the JLC equation for 6qa. 

4 .  T h e  E i g e n v a l u e s  o f  t h e  J a c o b i - L e v i - C i v i t a  E q u a t i o n  

In the light of the above discussion it is clear that, in order to follow the 
subsequent evolution of the system we have to come back to the complete 
3 L C  Eq. (7). In particular, are of great importance the eigenvalues {P(k)} of 
the stability matr ix  and defined by the equation: 

~-~a V c a c ( k ) = P ( k ) v ( k ) ,  k = 0 , . . . , 3 N - 1 ,  (9) 

with P(o) = 0, and v~o ) = 79u a ( 
Those eigenvalues, linked, through the JLC equation, to the evolution of 

the covariant derivatives of the components of perturbations, and, as it is 
easy to see, to the effective growth of perturbations [7]'[s], give informations 
equivalent to that  provided by other typical stochasticity indicators studied 
in dynamical systems theory, such as the Lyapunov exponents, but in a more 
manageable form. The reader can refer to the studies in [21],[7],[8] for a full 
account of this approach, but  here we will t ry to describe the main issues. 

As told before, the most direct way to gain some more accurate informa- 
tion about the global behaviour of perturbations, is to consider the equation 
for the components. As shown elsewhere ([7],[8]), this equation allows to ex- 
tract many of the features of the dynamical system, and in particular, for 
a N-body self-gravitating system, the accurate analysis of the information 
contained in it, shows how peculiar this dynamical system is, and how much 
significant is to speak about  mult ip le  ( ins tabi l i ty)  t ime-scales  in s tel lar  dy- 
namics:  the analysis of the eigenvalues of the stability matrix, shows the 
existence, for a system of N self-gravitating point masses, of a full hierarchy 
of time-scales, whereas, for the usual Hamiltonian systems with many degres 
of freedom there exists a generic homogeneity of time-scales. 

The explicit expression for T~a: 
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1 ( d ~ r ~  2 1 d2W] (V~V~)2 a 
7~ = ~ - f f  \ ds ] 2W ds 2 J ~ a + _ ~ _ u  u¢ 

1 
+g W, bguduc--g W, bc) -~ - ~  (W,  bc U a ub ab ab 

] 4~V2 ( u " W , c  -[-gabW, b Uc) -- W,c  , 

(10) 

where W = W(q) def E - V(q), allows us to affirm that,  also for the evolution 
of the components of the perturbation, the behaviour will change when the 
virialization is completed. 

It is also possible to show [6]'[7]'[s] that  the spectrum of eigenvalues of the 
stability matrix T~ describes in a coherent way the evolutionary properties 
of the system in the full phase space, giving a very effective tool for the 
determination of the stochastic character of the motion. Moreover, the study 
of the statistical behaviour of Hamiltonian systems with many (N >> 3) 
degrees of freedom, passing by the study of the geometrical properties of the 
manifold on which motion takes place, leads to the assessment of possible 
transitions in the chaotic regime in dependence to the binding energy of the 
systems, a property which is generic to most of the well studied ones. 

5. C o n c l u s i o n s  a n d  R e s u l t s  

Two observations to conclude: as shown by Pettini [21], the geometro-dynamical 
properties of the configuration manifold of a Hamiltonian system with many 
degrees of freedom are very rapidly variable functions of the point (and then 
of time). This implies that  the numerical simulations cannot have any immu- 
nity at all with respect to the linearly-induced exponential growth [6],F],[s] of 
perturbations due to the different values of curvature (for example) experi- 
mented by two different realizations of the same system. More: it is possible 
(with high probability) that  the exponential growth of errors in N-body sys- 
tems is related not (or not only) to the negativity of the curvature, but (also) 
to the parametric instability induced by the rapidly fluctuating geometrical 
properties: if this is the case, there is no rigorous result which connect the 
instability with "mixing". 

In order to speak of multiple relaxation time-scales (as it is possible to 
speak about multiple instability time-scales) it is necessary to show that 
some mechanism is effective in driving the system toward an alternative and 
intermediate kind of equilibrium, and that this happens on a time-scale dif- 
ferent by some order of magnitude from any other characteristic time, see 
e.g. [191,[10],[7],[S],[6]. 

The main issues of our studies are described in [7],[8]. 
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G r a v o t h e r m a l  Osc i l la t ions  
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Institut fiir Theoretische Physik und Sternwarte der Universit£t Kiel, Germany 

Single mass spherical star clusters are considered as idealized model systems 
for globular clusters or galactic nuclei. Two-body relaxation by distant en- 
counters drives them secularly through a sequence of hydrostatic equilibria, 
because the relaxation time-scale usually is much longer than the dynami- 
cal time-scale. Energy transport  within the system was believed to lead for 
point-mass systems in finite time to infinite central density ("gravothermal 
catastrophe", Lynden-Bell & Wood 1968; Hachisu et al. 1978). The effect can 
be understood as a consequence of the negative specific heat in the core of 
self-gravitating systems. However, at large central densities, the evolution is 
not any longer dominated by small angle distant two-body encounters. Close 
three-body encounters produce high-energy escapers as well as an energy in- 
put into various zones of the cluster due to their reaction products (Spitzer 
& Mathieu 1980; Giersz & Spurzem 1993, henceforth GS). Consistently there 
are post-collapse models of globular clusters with a central energy source, 
which was seen as a first approximation for the energy input due to hard 
encounters (H~non 1965; Inagaki & Lynden-Bell 1983). 

Sugimoto & Bettwieser (1983) and Bettwieser & Sugimoto (1984) de- 
tected in isotropic conducting gas sphere models with a distributed energy 
source in the core large amplitude non-linear oscillations, which they called 
"gravothermal oscillations". Goodman (1987) showed that such oscillations 
are caused by an instability or overstability of a self-similar post-collapse 
solution. Stable post-collapse models only exist if the energy generation is 
larger than a certain threshold, which corresponds in the simplified single 
mass model to a particle number of N < 7000. 

Gravothermal oscillations were later also found in direct numerical so- 
lutions of the orbit-averaged Fokker-Planck equation (Cohn et al. 1989). 
Numerical parameter studies with such models showed that the unstable 
cases are extremely sensitive to numerical errors in their long-term post- 
collapse evolution and that  the dynamical evolution can be described by a 
low-dimensional attractor,  which appears in several cases to be chaotic (Bree- 
den et al. 1992, henceforth BPC). 
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It  is not clear to what  extent gravothermal oscillations can be observed in 
real astrophysical star clusters. In most  models core collapse is reversed at a 
very small core particle number  - thus any energy generation should occur in 
the real N-body  system as a stochastic process instead of the smooth, ther- 
modynamic  energy generation assumed in the statistical models. Takahashi & 
Inagaki (1991) showed in their Fokker-Planck models, however, that  stochas- 
tic energy generation does not change the global picture of gravothermal 
oscillations. A collisional N = 104 calculation has been processed until "core 
bounce" (Spurzem & Aarseth 1993; see also some Figs. in GS); in pre-collapse 
there is fair agreement with the statistical model based on the Fokker-Planck 
approximation.  To judge about  post-collapse, however, the integration t ime 
is not yet sufficient. 

For the models presented in this paper the Boltzmann equation with a 
Fokker-Planck collisional te rm is considered as the fundamental  kinetic equa- 
tion. It  is appropriate  for systems whose evolution is dominated by distant 
binary encounters; since it is an evolution equation for the one-particle distri- 
bution function any correlations, as e.g. formation and evolution of binaries 
can not be included at this point. A set of moment  equations is derived from 
the kinetic equation up to second order and closed by a specially tailored 
heat flux equation in third order, which describes the heat t ransport  by dis- 
tant  binary encounters. In the isotropic case such approach is well known 
(Lynden-Bell & Eggleton 1980; Heggie 1984) - the moment  equations are 
just  conservation equations for mass, m om en tum and energy. The closure 
equation is similar to that  used e.g. in models of stellar evolution (but with 
another time-scale in the conductivity); therefore such models are commonly 
denoted as gaseous models of star clusters. Here it is taken into account that  
in spherical symmet ry  the radial and tangential  "thermal" energy (i.e. the 
radial and tangential  velocity dispersions) are not in equipartition in real 
star clusters since the time-scale for collisional isotropization is very long 
compared to the dynamical  time-scale. Therefore in addition to the isotropic 
gaseous model there are a correctibn in hydrostatic equilibrium, two separate 
energy equations and two closure equations for t ransport  of the radial and 
tangential  energy (in radial direction) and in second order a collisional term 
describing the decay of anisotropy. 

Let the dependent variables be the mass M,  contained in a sphere of ra- 
dius r, the local mass density p, radial and tangential pressure p, ,  pt, bulk 
mass t ransport  velocity u, and t ransport  velocities vr, vt of the radial and tan- 
gential energy, respectively. As auxiliary quantities the radial and tangential 

2 Pr/p, cr2t Pt/P, the average velocity dispersion 1-D velocity dispersions ~r r = = 
a 2 (~r~ + 2~rt2)/3, the anisotropy A 2 2 2 = = - 2~r t /cr r and the relaxation t ime 

9 cr 3 

T = 1 6 v ~  G2mplog(TN) (1) 

in the definition of Larson (1970) are used, where N is the total  particle 
number  of the star cluster, m the individual stellar mass and 7 a numerical 
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constant whose value will be discussed below. The equations are 

0M~ 
Or -- 4 ~ r 2 p ,  (2) 

0p0_7 + ;z~x o (put2)=0 , (3) 

Ou Ou GM~ 1 COp~ + 2 p~ - pt _ 0 ,  (4) 
a-7 + ~'~  + - - 7 -  + p--~-~ p,. 
cOpr 1 cO cOu 3 cO 4 Pt(Vt - U) 
cO---t" + r-i-~r (prur2) + 2 P ~ v  + -~i-~r (p~(vr - u)r2) - r 

2pr-pt ((Spr~ (5) 

cOPt 1 c9 ptu 1 cO u)r2 ) 2 P t ( V t - U )  
o-g + ;z~  (P, u~) + 2 + -#-gr(p,(v, - + 

r r (6) 

- -  3 )~A--""~A "~- k (~* ] bin3 ' 

A (9o" 2 
v r - u +  - - - -  - - 0 ,  (7) 

4~rGpT Or 

v r  = v ,  . ( 8 )  

The net transport velocities for radial and tangential energy (vr - u) and 
(vt - u) can be derived from the energy fluxes Fr and Ft (which are identified 
with the third order moments of the velocity distribution) by dividing out a 
convenient multiple of the relevant pressure (2pt for ( v t -  u), 3pr for ( v r -  u)).  
The reader interested in more details about this and the connection of the 
variables to moments of the stellar velocity distribution is referred to Louis 
/¢ Spurzem (1991, henceforth LS). 

The numerical constants AA, A and 7 occurring in Eqs. (5) to (7) are 
related to the time-scales of collisional anisotropy decay and heat transport, 
and to the Coulomb logarithm, respectively. A is related to the standard C 
constant in isotropic gaseous models (see e.g. Heggie &: Stephenson 1988) by 

A -  27V'~C 
10 " (9) 

TA is the anisotropy decay time-scale for an anisotropic local velocity distri- 
bution function; for a generalization of Larson's (1970) distribution function 
(series of Legendre polynomials) including anisotropy it is TA = 10 T/9  (see 
LS; in contrast to the isotropic result 5 T/6 ,  which has been frequently used 
in other work). Since the real distribution function is not completely deter- 
mined within the framework of the gaseous model a free numerical constant 
AA is introduced in Eqs. (5) and (6). 

Finally, the additional terms due to the average heating by formation and 
hardening of three-body binaries (see e.g. Cohn 1985) is 
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= 3 , (lO) 

~ /b in3  ~ ~t ]bin3 " 

This is an isotropic energy input. It is shown in GS and Giersz & Heggie 
(1993ab) that  for particle numbers between N = 103 and N = 10 4 the 
best agreement between direct N-body calculations, direct solutions of the 
orbit-averaged Fokker-Planck equation and this anisotropic gaseous models 
is ~h ieved  for one set of parameters, namely A = 0.4977 (i.e. C = 0.104), 
7 : 0.11, AA = 0 . 1 ,  and C~ = 90. Note that  the last value is the standard 
value derived from theoretical reasoning and three-body experiments, and it 
is independently confirmed by GS, and that  the value of 7 found empirically 
is somewhat smaller than e.g. Spitzer's (1987) standard value (7 = 0.4). 

Strictly the initial ansatz using the one-particle distribution function with- 
out any correlations except distant binary encounters is invalid in the presence 
of binaries. However, there appear to be only very few binaries in the core 
of a cluster, which only at short t ime intervals of maximum central density 
influence the dynamical evolution; moreover one can judge empirically from 
GS that  such description of the binary effects as phenomenological heating 
term included afterwards in the second order moment equations is a fair ap- 
proximation in a statistical sense to what happens in the real N-body system. 

For the numerical solution of the model equations and comparisons with 
direct N-body  results s tandard N-body units were used, where G = 1, the 
total  mass of the system M = 1, and the total energy of Plummer 's  model, 
which was used as initial model, is E = - 1 / 4 ;  in these units the scaling 
radius of Plummer 's  model is a = 3~r/16. The equations were discretized on 
a Eulerian mesh with 200 logarithmically equidistant grid points; they were 
distributed between a minimal and maximal radius of 2.06.10 -6 and 144. in 
the above units. A partially implicit Newton-Raphson-Renyey method was 
used to solve the difference equations. The numerical results were tested by 
comparing with the known self-similar solutions of LS. 

As a function of particle number as control parameter there are two critical 
numbers; first N1 marking the transition from a steady regular post-collapse 
expansion at low N to overstable post-collapse solutions exhibiting regular 
oscillations, the other N2 marking the transition to unstable large amplitude 
gravothermal oscillations, presumably of chaotic nature, as discussed for the 
isotropic case by Goodman (1987) and BPC. BPC also show that  in their nu- 
merical models there are some periodic windows even for N > N2. However, 
for the anisotropic case the corresponding work has not yet been done; we 
are currently performing as a first step a numerical survey to approximately 
determine the critical numbers and the behaviour of the post-collapse models 
(Spurzem & Louis 1993). But we are well aware that  it is very difficult to 
numerically prove the existence of chaos. 
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time averaged over the 
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containing 5 - 10% of 
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As in the isotropic Fokker-Planck models a low-dimensional a t t rac tor  de- 
scribes well the determinist ic  evolution of  the system. Such result is plausible 
in the light of  results f rom Allen ~z Heggie (1992), who have demonst ra ted  
tha t  m a n y  features of  g ravothermal  oscillations can be simulated by dynami-  
cal equat ions of  a simple three-zone model.  The  variables sufficient to describe 
the dynamica l  evolution of the cluster core are "detrended" values of  central 
density p~, central  velocity dispersion c/c, and a dimensionless core collapse 
rate ~ = trxdlnpc/dt, where trx is the local two-body relaxation time-scMe. 
Fig. 1 shows the evolution of  Pc for a N = 5 • 104 model.  "Detrending" a 
quant i ty  means  here to divide it by a global power law t a (whose value a is 
taken f rom G o o d m a n ' s  (1987) self-similar post-collapse solutions). It  is for 
example a = - 2  for the central  density such tha t  P'c = t2pc has a constant  
t ime average. I t  is remarkable  tha t  here with anisotropy the same power- 
laws can be applied to get constant  t ime averages as in the isotropic case 
of  G o o d m a n  (1987). Thus  for, e.g., N = 10 ~ a very nice periodic a t t rac tor  
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was found, whose projection is shown in Fig. 3. Fig. 2 depicts an example of 
the evolution of anisotropy in one of the central Lagrangian mass shells for 
another model. 

The results obtained so far show compared to BPC for the anisotropic 
gaseous model a larger fraction of regular periodic attractors. From the 
present results it cannot be excluded that there also may exist chaotic so- 
lutions for some particle numbers. The dynamical evolution of the presum- 
ably chaotic solutions is similar to the R/issler attractor (Jackson 1987, see 
also BPC). Future work will present these numerical results in more detail 
(Spurzem & Louis 1993); furthermore the critical numbers N1 and N2 should 
be derived for the anisotropic case, which requires first to derive new self- 
similar anisotropic post-collapse models with a distributed energy source, 
because previous models including anisotropy (LS) are singular ones. 
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A b s t r a c t .  We present a new approach to deal with the problem of stabil- 
ity of collisionless stellar systems. This technique, based on the symplectic 
structure of the Vlasov-Poisson system, allows us to derive a new stability 
criterion for general systems. It  is very useful in the anisotropic spherical 
c a s e .  

1. Introduction 

As remarked by Zwicky in the thirties, owing to their physical aspect galax- 
ies and comparable  stellar systems seem to be relaxed, but their collisional 
relaxation t ime is in general larger than the age of the universe. So, there 
exists an impor tan t  collisionless epoch in the life of stellar systems which 
governs a par t  of their dynamical  evolution. Taking into account the statisti- 
cal behaviour of their components,  stellar systems can be treated by a Kinetic 
Theory. However, as stressed by several authors (see Binney & Tremaine, 1987 
- hereafter BT - for a review) classical stability techniques stops when the 
problem becomes inhomogeneous and anisotropic. In this sense, following the 
pioneer works of Bartholomew (1971) reactualized by Kandrup (1991a), we 
present here a new symplectic approach of dynamical  evolution of collision- 
less stellar systems. This approach permits  to obtain a quite simple and very 
general stabil i ty criterion, which, in the special case of spherical isopotential 
curves allows us to generalise an impor tan t  isotropic result called sometimes 
Antonov-Lebovitz Theorem. 

2. A Symplectic Stability Criterion 

As shown by Morrison (1982), the s tandard Vlasov equation can be expressed 
by using functionals. Indeed, if F is any functional involving the phase space, 
the mot ion evolution equation can be written 
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where [, ] denotes the standard Poisson bracket in the canonical conjugated 
variables p and q, {, ) has all the properties of a Lie bracket, and ~/~f means 
a functional derivative operation. 

Owing to the fact that any physical perturbation of any initial state fo 
can be described by a generator g which is a Hamiltonian-like function rep- 
resenting the effectuated canonical transformation (e.g., Bartholomew 1971), 
we can find a general Taylor expansion for any functional F during this per- 
turbation 

~[s0] = r[s0]- ~c,F} + ½{c, ~c, r}}-  ~{c, {c, :c, F}}}+... 

: ( . ,  p,.,:o], 
where the functional generator G is such that 6G/6f = g. 

It is important  to note that  the development in Eq. (2) is true for any 
functional, so we can apply it to all the functionals intervening in our problem 
such as the energy, the entropy or more complicated ones. 

Applying Eq. (2) to the special case of the total energy of the system 

/ p2 Gm~jdF/dr, f(q,p,t)f(q,,p,,t ) H[f]= dr~-~mf(q,p,t ) - - - f - -  ~ _ - - ~  , (3) 

and choosing for fo a steady state, the first order energy variation is clearly 
vanishing, and the second order one can be written 

1 /  Gm2 /dF / dr, [g, fo].[g', ]~] 
H(2)[f°]  -- - 2  [g' El[g, fol dr - - - y -  # - ~  , (4) 

where E is the single-particle energy, functional derivative of H[f]. The sta- 
bility of the system against some perturbations generated by some 9, can now 
be investigated in the anisotropic inhomogeneous case by the study of the sign 
of H (2) If0]. However, this development gives us only a sufficient condition for 
stability. Indeed, we cannot make, as Laval, Mercier, &: Pellat (1965), a con- 
nection between H(2)[f0] and some definite inner product to have a general 
energy principle. As quoted by Larson (1991) the inner-product related to 
our general problem is indefinite, and in this case relations like Schwartz's 
inequality fails and does not allow us to connect our energy variation to some 
dynamical variable to diagnostic linear instabilities. However, as illustrated 
in Kandrup (1991b), negativity of H(Z)[fo] can imply secular instability, and 
a way is open in this weak version of instability. 
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As quoted in BT, the stability problem of a collisionless stellar system and of 
a gaz volume in gravitational interaction are closely related. In fact, in many 
cases the hydrodynamic problem (when identifiable) is simpler than its stellar 
analogue. Indeed, a hydrodynamic problem is a three dimensional one, while 
stellar systems have six degrees of freedom. Hence a technique to simplify 
the study of stellar systems consists in averaging over velocities, when it is 
possible to deal with the hydrodynamic counterpart of the problem. One 
of the most important  isotropic result, sometimes called Antonov-Lebovitz 
Theorem (ALT) (see BT), is built on this technique and assures the  stability 
of f0(E) ' s  systems against non-radial perturbations. 

In a recent paper (Aly & Perez 1992), we present a new demonstration 
of this important  result. This is the combination of this new method and the 
symplectic approach of the stability criterion which allows us to obtain our 
result on the stability of spherical stellar systems. 

Before to give the proof we have to install the context and to define the 
class of perturbations which allows us to use the technique. 

A stat ionary spherical system has a distribution function which depends 
only on the energy E and on the squared norm L 2 of the angular momentum 
L, f0 = f0(E,  L2). We assume here that 

cOfo Ofo 
fE : :  (9E "( 0, and fL 2 := (9L2 _< 0 .  (5) 

We want to consider the stability of such an equilibrium with respect to the 
class of preserving perturbations generated by all the functions g satisfying 
[g, L 2] = 0. It is easy to see what is precisely the class of preserving pertur- 
bations by writing the definition of a g-generated perturbation 

f l  - [g, fo(E, L2)] = fE[g, E] + fL~[g, L2]. (6) 

This equation is written in the general anisotropic spherical case. In order to 
clarify the situation, it is clear that in the isotropic case where fo depends 
only of E,  all the perturbations are preserving because g always commutes 
with L 2. Moreover, the stability of isotropic systems in the conditions of 
Eq. (5) is well known. On the other hand, in the case of purely radial orbit 
systems, with distribution function of the form fo(E, L 2) = ¢(E)-~(L 2) (e.g., 
Fridman & Polyachenko 1984), where ¢ is any smooth function and 6 denotes 
the Dirac distribution, one can show that  there exists no non-vanishing g such 
that [g, L 2] -- 0 and f l  ~ 0 simultaneously. In this sense we say that purely 
radial orbit systems cannot receive preserving perturbations. 

In the intermediate case, preserving perturbations are generated by all the 
functions of the form g(L 2, Lx, Ly, Lz), for example all the radial perturba- 
tions are also preserving. Non-radial and preserving perturbations are clearly 



180 J6r6me PEREZ & Jean-Jacques ALY 

mathematically defined and numerically seen as not forming a vanishing set, 
but we haven't seen their physical interpretation. 

In the general spherical case one can split the perturbation f l  into two 
parts, with one part being invariant under rotations, 

f l  ~---fl + ~11, 

: J]l(R(q), R(p))dR, and (7) 

where the averaging is made other all possibles rotations R. Hence, one can 
show that  the second order variation of the energy splits into H(2)[fl] : 
H(2)[~1] + H(2)[6fl]. The first part being positive by Kandrup & Sygnet 
(1985) Theorem, we study the second non-radial part and show (using the 
revisited proof of ALT and the well known Wirtinger inequality) 

½ / (6p1) 2 Gm2/dr /dr ,  6P16P~ II(2)[Sfl] >_ - -~-] -  dr  - T ~ q 7  I ~ 0,  (8) 

where the non-radial part of the perturbed density 6pl is directly obtained 
from 6fl by a velocity averaging. This result assures the stability of any 
anisotropic spherical stellar system having the properties in Eq. (5) against 
preserving perturbations. Therefore, it should be stressed that  the preserv- 
ing character is not robust dynamically. To have a greater signification this 
stability result must be completed by a numerical experiment concerning the 
existing relation between the nature of perturbation affecting a wide class of 
anisotropic spherical systems and their preserving character. These kinds of 
simulations are under investigation and preliminary results tend to confirm 
that  in most cases, stable systems are preserving-perturbed, and unstable sys- 
tems are non-preserving perturbed (Perez et al. 1993; Perez & Alimi 1993). 

R e f e r e n c e s  

Aly J.J., Perez J., 1992, MNRAS 259, 95 
Bartholomew P., 1971, MNRAS 151, 333 
Binney J., Trem~ine S., 1987, Galactic Dynamics, Princeton Univ. Press. 
Fridman A.M., Polyachenko V.L., 1984, Physics of Gravitating Systems, New York, 

Springer 
Kandrup I-I.E., 1990, Astrophys. J. 351, 104 
Kandrup I-I.E., 1991a, Astrophys. J. 370, 312 
Kandrup H.E., 1991b, Astrophys. J. 380, 511 
Kandrup H., Sygnet J.F., 1985, Astrophys. J. 298, 27 
Laval G., Mercier C., Pellat R., 1965, Nuclear Fusion 5, 156 
Larson J., 1991, Physics Review Let. 66, 1466 
Morisson P.J., 1980, Physics Let. A 80, 383 
Perez J., Alimi J.M., Aly J.J., Scholl H., 1993, Proceedings of the Gravitational 

Meeting of Aussois, Springer, in press 
Perez J., Aly J.J., 1993, MNRAS, in preparation 
Perez J., Alimi J.M., Aly J.J., SchoU H., 1993, MNRAS, in preparation 



5. The Few-Body P rob lem 





The Stabil ity of  the Solar System 

Jacques LASKAR 

Astronomie et Syst~mes Dynamiques, 
75006, Paris, France 

Bureau des Longitudes, 3 rue Mazarine, 

The problem of the stability of the solar system has fascinated astronomers 
and mathematicians since antiquity, when it was observed that among the 
seemingly fixed stars, there were also "wandering s tars"- - the  planets. Efforts 
were first focused on finding a regularity in the motion of these wanderers, so 
their movement among the fixed stars could be predicted. For Hipparcus and 
Ptolemy, the ideal model was a combination of uniform circular motions, the 
epicycles, which were continually adjusted over the centuries to conform to 
the observed course of the planets. Astronomy had become predictive, even 
if its models were in continual need of adjustment. 

From 1609 to 1618, Kepler fixed the planets' trajectories: having assimi- 
lated the lessons of Copernicus, he placed the Sun at the center of the universe 
and, based on the observations of Tycho Brahe, showed that the planets de- 
scribed ellipses around the Sun. At the end of a revolution, each planet found 
itself back where it started and so retraced the same ellipse. Though seduc- 
tive in its simplicity, this vision of a perfectly stable solar system in which 
all orbits were periodic would not remain unchallenged for long. 

In 1687 Newton announced the law of universal gravitation. By restricting 
this law to the interactions of planets with the Sun alone, one obtains Ke- 
pler's phenomenology. But Newton's law applies to all interactions: Jupiter 
is a t t racted by the Sun, as is Saturn, but Jupiter and Saturn also at tract  
each other. There is no reason to assume that the planets' orbits are fixed 
invariant ellipses, and Kepler's beautiful regularity is destroyed. 

In Newton's view, the perturbations among the planets were strong 
enough to destroy the stability of the solar system, and divine interven- 
tion was required from time to time to restore planets' orbits to their place. 
Moreover, Newton's law did not yet enjoy its present status, and astronomers 
wondered if it was truly enough to account for the observed movements of 
bodies in the solar system. 

The problem of solar system stability was a real one, since after Kepler, 
Halley was able to show, by analyzing the Chaldean observations transmitted 
by Ptolemy, that  Saturn was moving away from the Sun while Jupiter was 
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moving closer. By crudely extrapolating these observations, one finds that six 
million years ago Jupiter and Saturn were at the same distance from the Sun. 
In the 18 th century, Laplace took up one of these observations, which he dated 
March 1 st, 228 BC: At  4:23 am, mean Paris time, Saturn was observed "two 
fingers" under Gamma in Virgo. Starting from contemporary observations, 
Laplace hoped to calculate backward in time using Newton's equations to 
arrive to this 2000 year-old observation. 

The variations of planetary orbits were such that,  in order to predict the 
planets'  positions in the sky, de LaLande was required to introduce artificial 
"secular" terms in his ephemeris tables. Could these terms be accounted for 
by Newton's law? 

The problem remained open until the end of the 18 th century, when La- 
grange and Laplace correctly formulated the equations of motion. Lagrange 
started from the fact that  the motion of a planet remains close, over a short 
duration, to a Keplerian ellipse, and so had the notion to use this ellipse 
as the basis for a coordinate system. Lagrange then wrote the differential 
equations that  govern the variations in this elliptic motion under the effect 
of perturbations from other planets, thus inaugurating the methods of classi- 
cal celestial mechanics. Laplace and Lagrange, whose work converged on this 
point, calculated secular variations, in other words long-term variations in 
the planets'  semi-major axes under the effects of perturbations by the other 
planets. Their  calculations showed that ,  up to first order in the masses of the 
planets, these variations vanish (Poisson and Poincar~ later showed that this 
result remains true through second order in the masses of the planets, but it 
is not valid at the third order). 

This result seemed to contradict Ptolemy's observations from antiquity, 
but by examining the periodic perturbations between Jupiter and Saturn, 
Laplace discovered a quasi-resonant t e r m  (2)~Jupiter - 5/~Saturn) in their lon- 
gitudes. This term has an amplitude of 46~50" in Saturn's longitude, and a 
period of about  900 years. This explains why observations taken in 228 BC 
and then in 1590 and 1650 could give the impression of a secular term. 

Laplace then calculated many other periodic terms, and established a 
theory of motion for Jupiter and Saturn in very good agreement with 18 th 

century observations. Above all, using the same theory, he was able to account 
for Ptolemy's  observations to within one minute of arc, without additional 
terms in his calculations. He thus showed that  Newton's law was in itself 
sufficient to explain the movement of the planets throughout known history, 
and this exploit no doubt part ly accounted for Laplace's determinism. 

Laplace showed that  the planets'  semi-major axes undergo only small os- 
cillations, and do not have secular terms. At the same time, the eccentricity 
and inclination of planets'  trajectories are also very important  for solar sys- 
tem stability. If a planet 's eccentricity changes appreciably, its orbit might 
cut through another planet 's orbit, increasing the chances of a close encounter 
which could eject it from the solar system. 
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Fig. 1. The solutions of Laplace for the motion of the planets are combinations of 
circular and uniform motions with frequencies the precession frequencies gi and si 
of the solar system, which correspond to periods from about 50000 years to several 
million years. The eccentricity c3 of the Earth is given by OP, while the inclination 
of the Earth with respect to the invariant plane of the solar system (is) is OQ 
(Laskar 1992b) 

Laplace revisited his calculations, taking into account only terms of first 
order in the perturbation series, and showed that the system of equations 
describing the mean motions of eccentricity and inclination may be reduced 
to a system of linear differential equations with constant coefficients. He also 
showed, using the conservation of the angular momentum, that  the solutions 
of this system are quasi-periodic (linear combinations of periodic terms), 
and that  the variations in eccentricity reduce to a superposition of uniform 
circular motions (Fig. 1). The inclinations and eccentricities of the orbits are 
therefore subject to only small variations about their mean values. But it must 
be stressed that  Laplace's solutions are very different from Kepler's, because 
the orbits are no longer fixed. They are subject to a double precessional 
motion with periods ranging from 50,000 to several million years: precession 
of the perihelion, which is the slow rotation of the orbit in its plane, and 
precession of the nodes, which is the rotation of the plane of the orbit in 
space. 

Later, Le Verrier, famed for his discovery in 1846 of the planet Neptune 
through calculations based on observations of irregularities in the movement 
of Uranus, took up Laplace's calculations and considered the effects of higher 
order terms in the series. He showed that these terms produced significant 
corrections and that  Laplace's and Lagrange's calculations "could not be 
used for an indefinite length of time". He then challenged future mathemati-  
cians to find exact solutions, without approximations. The difficulty posed 
by "small divisors" showed that  the convergence of the series depended on 
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initial conditions, and the proof of the stability of the solar system remained 
an open problem. 

Between 1892 and 1899 Poincar~ formulated a negative response to Le 
Verrier's question. In so doing he rethought the methods of celestial mechanics 
along the lines of Jacobi's and Hamilton's work. In his memoir "On the three 
body problem and the equations of dynamics," Poincar~ showed that it is 
not possible to integrate the equations of motion of three bodies subject to 
mutual  interaction, and not possible to find an analytic solution representing 
the movement of the planets valid over an infinite time interval, since the 
series used by astronomers to calculate the movement of the planets were not 
convergent. 

In the 1950's and 60's, the mathematicians Kolmogorov, Arnold, and 
Moser took up Poincar~'s work and showed that,  for certain values of the 
initial conditions, it was nonetheless possible to obtain convergent series. If 
the masses, eccentricities, and inclinations of the planets are small enough, 
then many initial conditions lead to quasi-periodic planetary trajectories. But 
the actual masses of the planets are much too large for this result (known as 
the KAM theorem) to apply directly to the solar system and thereby prove 
its stability. 

All the efforts since the first demonstration of Laplace, were devoted to 
the search of proofs of stability for the solar system. But as Poincar~ already 
forecast, all these proofs were only approximations, and none of them pre- 
vented the solar system for being unstable on very long time scales. The proof 
of Arnold (1963), is a rigorous proof, but as it is stated above, it does not 
apply directly to our solar system to demonstrate its stability. Anyway, all 
these elements contributed to the general feeling that the solar system was 
stable, and this question was not much investigated, although the problem 
remained unsolved. 

But in the past five years, the understanding of the solar system stabil- 
ity question has advanced considerably, partly due to the improvement of 
computer technology. 

One part of the efforts towards an understanding of the long time behavior 
of the solar system consists of direct numerical integration of the equations 
of motion (Newton's equations, sometimes with additional relativistic correc- 
tions or perturbations due to the Moon). Initial studies were limited to the 
motion of the outer planets, from Jupiter to Pluto. In fact, the more rapid 
the orbital movement of a planet, the more difficult it is to numerically inte- 
grate its motion. To integrate the orbit of Jupiter, a step-size of 40 days will 
suffice, while a step-size of 0.5 days is required to integrate the motion of the 
whole solar system. The project LONGSTOP (Carpino et al. 1987; Nobili et 
al. 1989) must be counted among the recent studies; this used a CRAY to 
integrate the system of outer planets over a model time of 100 million years. 
At about  the same time, calculations of the same system were carried out at 
MIT over even longer periods, corresponding to times of 210 and 875 rail- 
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lion years. These calculations were carried out on the "Orrery," a vectorized 
computer specially designed for tile task (Applegate et al. 1986; Sussman &: 
Wisdom 1988). This latter integration showed that the motion of Pluto is 
chaotic, with a Liapunov exponent of 1/20 million years. But since the mass 
of Pluto is very small, (1/130 000 000 the mass of the Sun), this does not in- 
duce macroscopic instabilities in the rest of the solar system, which remained 
stable in these numerical studies. 

My approach was different, and more in tile spirit of the analytical works 
of Laplace and Le Verrier. Indeed, since these pioneer works, the Bureau 
des Longitudes, has traditionally been the place for development of analyti- 
cal planetary theories (Brumberg & Chapront 1973; Bretagnon 1974; Duriez 
1979). All these studies are based on classical perturbation series. Implicitly, 
they assume that the motion of the celestial bodies they study are regular 
and quasi periodic. The methods used are essentially the same which were 
used by Le Verrier, with the additional help of the computers. Indeed, such 
methods can provide very satisfactory approximations of the solutions of the 
planets over a few thousand years, but they will not be able to give answers 
to the question of the stability of the solar system over time span compa- 
rable to its age. This difficulty is the main reason which motivated the long 
time direct numerical integrations of the gravitational equations. This new 
approach, which was made possible by the use of the computers, can give 
very precise solutions of the trajectories, but they are limited by the short 
step-size necessary for the integration of the whole solar system. It should be 
stressed, that  until 1991, the only numerical integration of a realistic model 
of the full solar system was the numerically integrated ephemeris DE102 of 
:IPL (Newhall et al. 1983) which spanned only 44 centuries. 

At first, I tried to extend as far as possible the classical analytical plan- 
etary theories, but I realized quite rapidly  that  it was hopeless when con- 
sidering the whole solar system, because of severe convergence problems en- 
countered in the system of the inner planets (Laskar 1984). I thus decided to 
proceed in two very distinct steps: a first one, purely analytical is the averag- 
ing of the equations of motion over the rapid angles, that  is the motion of the 
planets along their orbits. This process was conducted in a very extensive 
way, without neglecting any term, up to second order with respect to the 
masses, and through degree 5 in eccentricity and inclination. The system of 
equations thus obtained comprises some 150,000 terms, but it can be consid- 
ered as a simplified system, as its main frequencies are now the precessing 
frequencies of the orbits of the planets, and no longer comprise their orbital 
periods. The full system can thus be numerically integrated with a very large 
step-size of about 500 years. Contributions due to the Moon and to general 
relativity are added without difficulty. 

This second step, i.e. the numerical integration, is very efficient because 
of the symmetric shape of the secular system, and was conducted over 200 
million years in just a few hours on a super computer. The main results of this 
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Fig. 2. Solutions for the eccentricity and inclination of the Earth. The effect of the 
chaotic dynamics in the solar system can be pictured by enlarging each circle of 
Fig. 1, which corresponds to a fundamental frequency of the solar system, into a 
band corresponding to the chaotic zone. The position of the junction points inside 
this zone will be unpredictable after several million years (Laskar 1992b) 

integration was to reveal that  the whole solar system, and more particularly 
the inner solar system (Mercury, Venus, Earth,  and Mars), is chaotic, with a 
Liapunov exponent of 1/5 million years (Laskar 1989). An error of 15 m in the 
Ear th ' s  initial position gives rise to an error of about  150 m after 10 million 
years; but  this same error grows to 150 million km after 100 million years. It  
is thus possible to construct ephemerides over a 10 million year period, but it 
becomes practically impossible to predict the motion of the planets beyond 
100 million years. 

This chaotic behavior essentially originates in the presence of two secular 
resonances among the planets: 8 = 2(g4 - g3) - (s4 - s3), which is related to 
Mars and the Earth, and ~r = (gi - g5) - (sl - s2), related to Mercury, Venus, 
and Jupi ter  (the g~ are the secular frequencies related to the perihelions of 
the planets, while the si are the secular frequencies of the nodes) (Laskar 
1990). The two corresponding arguments  change several times from libration 
to circulation over 200 million years, which is also a characteristic of chaotic 
behavior. 

When these results were published, the only possible comparison was the 
comparison with the 44 centuries ephemeris DE102, which already allowed 
to be confident on the quality of the results (Laskar 1986, 1990), but at the 
time, I thought it would need about  10 years before similar results could be 
obtained with direct numerical integration of the gravitational equations. In 
fact, due to the very rapid advances in computer  technology, and in partic- 
ular to the development of workstations, only two years later, Quinn et al. 
(1991) published a numerical integration of the full solar system, including 
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Fig. 3. Eccentricity and inclination of Mercury (Laskar 1992b) 

the effects of general relativity and the Moon, which spanned 3 million years 
in the past (completed later on by an integration from - 3  Myr to +3 Myr). 
Comparison with the secular solution (Laskar 1990) shows very good quan- 
ti tative agreement, and confirms the existence of secular resonances in the 
inner solar system (Laskar et al. 1992a). Later on, using mapping techniques, 
Sussman ~z Wisdom (1992) published an integration of the solar system over 
100 miUion years which confirms the existence of the secular resonances as 
well as the value of the Liapunov exponent for the solar system. 

The solar system, and more particularly the inner solar system, is strongly 
chaotic, but on a rather long time scale. This is because the fundamental 
periods of the motions involved are the precessional periods of the orbits 
(on the order of 100,000 years), and not the orbital periods (on the order 
of a year). Over periods on the order of 100 million years, the variations of 
planetary eccentricities and inclinations are dominated by the quasi-periodic 
components already present in the solutions of Laplace and Le Verrier. The 
effects of chaos over 400 million years may nevertheless be estimated to about 
0.01 for the Earth 's  eccentricity and one degree for its inclination (Fig. 2). 
These are of course only lower estimates, since we do not yet have the means 
to bound these variations from above over several hundred million years, 
which would require a more global knowledge of the phase space of motion. 

The most perturbed planet is Mercury, the effects of its chaotic dynamics 
being clearly visible over 400 million years (Fig. 3-4). The chaotic compo- 
nent consists of the variations in the envelope bounding the eccentricity and 
inclination curves of Fig. 4. These variations reach several degrees for the 
inclination, and this mechanism probably explains the current high values of 
Mercury's eccentricity and inclination. 
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Fig .  4. The chaotic motion of Mercury: Mercury is the planet for which the effect of 
the chaotic dynamics is the most spectacular. Here are given the computed evolution 
of the eccentricity (top) and inchnation (bottom) of Mercury with respect to time 
from -200  to -t-200 million years. On each of these curves, two kind of variations can 
be seen: a rapid variation, with periods of about 100,000 years which correspond 
basically to the regular part  of the solution, as described by Laplace, and a slow 
variation, which shows the effect of the chaotic dynamics. This variations reaches 
0.05 for the eccentricity of Mercury, and several degrees for its inclination. More, 
the regular variations of Laplace are bounded for an infinite time, but we do not 
know at the present what are the possible chaotic variations of the eccentricity and 
inclination of the planets over time span of 5 billion years, comparable to the age 
and life expectation of the solar system 

Ins t ab i l i t i e s  of  ano the r  sort  also mani fes t  themselves  in the mo t ion  of  the  
solar  s y s t e m ' s  p lanets .  These  mo t ions  are  not  present  in the  orbi ts ,  bu t  r a the r  
in the  o r i en t a t i on  of  the  p l a n e t s '  axes of ro ta t ion .  Because of  thei r  equa to r ia l  
bulge,  the  p l ane t s  are  sub jec t  to torques  ar is ing f rom the g rav i t a t i ona l  forces 
of  the i r  sa te l l i t es  and  of  the  Sun. This  causes a precessional  mot ion ,  which in 
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the Earth 's  case has a period of about 26,000 years. Moreover, the obliquity 
of each planet - - t h e  angle between the equator and the orbital p lane- -  is not 
fixed, but suffers perturbations due to the secular motion of the planet 's orbit. 
In particular, for Mars, it was known since the work of Ward (1974) that  these 
perturbations induce large oscillations of about 10 degrees of its obliquity due 
to the proximity of secular spin orbit resonances. In fact, recent computations 
showed that the motion of the obliquity of Mars is chaotic (Laskar ~ Robutel 
1993; Touma ~ Wisdom 1993). Using frequency analysis (Laskar 1990, 1993; 
Laskar et al.1992b), we could even show that  the chaotic zone of the obliquity 
of Mars extends from 0 to 60 degrees, and such large changes in obliquity 
were observed over time span shorter than 50 Myr (Laskar ~ Robutel 1993). 

For the Earth, the oscillations of the obliquity, which appear to be the 
determining factor in the onset of the ice ages, are regular, varying only 
±1.3 degrees about  the mean obliquity value of 23.3 ° (Laskar et al. 1993a). 
But in the absence of the Moon, the Earth 's  obliquity would no doubt be 
chaotic, experiencing strong oscillations ranging from 0 ° to nearly 850 which 
would profoundly modify the surface climate (Laskar et al. 1993b). Such 
behavior was perhaps also experienced by Mercury and Venus in the course 
of their history, before their rotations were slowed through dissipative effects. 
In particular, for Venus, this possible instability provides a mechanism for 
inverting the planet without resorting to large impacts (Laskar & Robutel 
1993). 

A c k n o w l e d g m e n t s :  It is a pleasure to thank H.S. Dumas for his help. 

References  

Applegate J.H., Douglas M.R., Gursel Y., Sussman G.J., Wisdom J., 1986, "The 
solar system for 200 million years", Astron. J. 92, 176-194 

Arnold V.I., 1963, "Small denominators and problems of stability of motion in 
classical celestial mechanics", Russian Math. Surveys 18, 6, 85-193 

Bretagnon P., 1974, "Termes h longue pSriode dans le systSme solaire", Astron. 
Astrophys. 30, 141-154 

Brumberg V.A., Chapront J., 1973, "Construction of a general planetary theory of 
the first order", Celes. Mech. 8, 335-355 

Carpino M., Mflani A., Nobili A.M., 1987, "Long-term numerical integrations and 
synthetic theories for the motion of the outer planets", Astron. Astrophys. 181, 
182-194 

Duriez L., 1979, "Approche d'une th$orie g6ndrale plandtaire en variables hdliocen- 
triques", th~se, Lille 

Laskar J., 1984, "Th$orie g6n6rale planStaire: ~lSments orbitaux des plan~tes sur 
un million d'ann~es", thSse, Paris 

Laskar J., 1986, "Secular terms of classical planetary theories using the results of 
general theory",Astron. Astrophys. 157, 59-70 

Laskar J., 1989, "A numerical experiment on the chaotic behaviour of the Solar 
System", Nature 338, 237-238 

Laskar J., 1990, "The chaotic motion of the solar system. A numerical estimate of 
the size of the chaotic zones", Icarus 88, 266-291 



192 Jacques LASKAR 

Laskar J., 1992a, "A few points on the stability of the solar system", in Symposium 
IAU 152, S. Ferraz-Mello ed., 1-16, Kluwer, Dordrecht 

Laskar J., 1992b, "La stabilit~ du Syst~me Solaire", in Chaos et D~terminisme, A. 
Dahan et al., eds., Seuil, Paris 

Laskar J., 1993, "Frequency analysis for multidimensional systems. Global dynamics 
and diffusion", Physiea D 67, 257-281 

Laskar J., Quinn T., Tremaine S., 1992a, "Confirmation of Resonant Structure in 
the Solar System", Icarus 95, 148-152 

Laskar J., Froeschl~ CI., Celletti A., 1992b "The Measure of Chaos by the Nu- 
merical Analysis of the Fundamental Frequencies. Application to the Standard 
Mapping", Physica D 56, 253-269 

Laskar J., Robutel P., 1993, "The chaotic obliquity of the planets", Nature 361, 
608-612 

Laskar J., Joutel F., Boudin F., 1993a, "Orbital, precessional, and insolation quan- 
tities for the Earth from -20Myr to +10Myr", Astron. Astrophys. 270, 522-533 

Laskar J., Joutel F., Robutel P., 1993b, "Stabilization of the Earth's obliquity by 
the Moon", Nature 361, 615-617 

Newhall X. X., Standish E. M., Williams J. G., 1983, "DE102: a numerically inte- 
grated ephemeris of the Moon and planets spanning forty-four centuries", Astron. 
Astrophys. 125, 150-167 

Nobili A.M., Mflani A., Carpino M., 1989, "Fundamental frequencies and small 
divisors in the orbits of the outer planets", Astron. Astrophys. 210, 313-336 

Quinn T.R., Tremaine S., Duncan M., 1991, "A three million year integration of 
the Earth's orbit", Astron. J. 101, 2287-2305 

Sussman G.J., Wisdom J., 1988, "Numerical evidence that the motion of Pluto is 
chaotic", Science 241,433-437 

Sussman G.J., Wisdom J., 1992, "Chaotic evolution of the solar system", Science 
257, 56-62 

Touma J., Wisdom J., 1993, "The chaotic obliquity of Mars", Science 259, 1294- 
1297 

Ward W.R., 1974, "Climatic Variations on Mars: 1.Astronomical Theory of Insola- 
tion", J. Geophys. Res. 79, 3375-3386 



T h e  O n e - D i m e n s i o n a l  T h r e e - B o d y  Problem:  
N u m e r i c a l  S imulat ions  

J.L. ROUET 1, R. DUFOUR 2, & M.R. FEIX 2 

1 UFR Facultd des Sciences, BP 6759, Orldans Cedex 2, France 
2 PMMS/CNRS, 45071 Orldans Cedex 2, France 

A b s t r a c t .  The ergodic properties of a one-dimensional gravitational sys- 
tem belonging to the microcanonical ensemble are studied. This system, con- 
sti tuted of equal-mass particles, exhibits very strong binary structures which 
prevent the system to be ergodic and then to reach the theoretical curves 
predicted by Rybicki. The presence of the binary structure (called molecule) 
is examined through two criterions. The first one is given by a topological 
property based on the order relation of the one-dimensional systems; the 
second one is the internal energy of the molecule. At last the study of the 
molecule stability indicates that  it strongly depends on initial conditions. 

1. I n t r o d u c t i o n  

One-dimensional systems have been studied since many years. Although un- 
realistic, they give some interesting ideas on the basic physical concepts. Such 
is the case for the study of ergodicity for the following reasons: 

- The theoretical distribution functions of one-dimension systems have been 
determined for numerous systems; plasma (Lenard 1961), Boltzmann-gas 
(Rouet et al. 1993), gravitational systems (Rybicki 1971). 

- In the case of some one-dimensional systems it is possible to perform an 
exact numerical code (Feix 1969), a property which is crucial to test the 
validity of the ergodic concept. 

At last the very-long range field of one-dimensional gravitational particles 
keeps the system self-trapped and amplifies the formation and live of coherent 
structures such as binary structures observed in this study. 

The validity of the concept of ergodicity has been numerically tested on a 
very simple system, that  is, the Boltzmann gas. Such a system is constituted 
of point particles, of different masses, moving on a line and experiencing hard- 
core collisions (for equal masses, the result is trivial). The numerical results 
fit the theoretical one obtained, 
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- by supposing the surface of equi-energy uniformly covered (this surface, 
or hypersurface, is drawn considering the "right" variable P/v/-m-), 

- because the system has an order relation given by the position of the 
particles (in this case the particles cannot cross each other and the initial 
order position relation is preserved during the simulation). 

These considerations give two interesting results: we obtain the equi- 
repartition of the energy whatever the number of particles is, and the po- 
sition distribution function is independent of the particle masses (ef. Rouet 
et al. 1993 for more details). 

Note that ,  in this case, for special ratio of particle masses we do not have 
a filling of the surface of constant total  energy because the initial values of the 
particle velocities are preserved. We verify that  the numerical results recover 
this property which indicates that  the round-off errors are not too important,  
and, at least for this case, do not destroy this conservative set of values. 

2 .  T h e  O n e - D i m e n s i o n a l  G r a v i t a t i o n a l  T h r e e - B o d y  

P r o b l e m  

2.1 M o d e l  a n d  P r e l i m i n a r y  R e s u l t s  

In the case of a one-dimensional system, the particles are infinite plane sheets 
of uniform superficial density of mass p, moving in the perpendicular direction 
of the sheet. As the field has no divergence at the origin, the particles are 
allowed to pass freely through each other. 

This present study is limited to the case of N = 3 particles of the same 
mass #. 

This system has three invariants which are, the total energy, the total 
momentum (which can, without any loss of generality, be taken equal to 
zero), and then the position of the center of mass. Taking into account these 
integrals of motion, Rybicki derived the position and velocity distribution 
functions for microcanonical ensemble systems of N particles. 

Numerical and theoretical results are compared in Figs. 1 for the velocity 
and position distribution functions. For this simulation (simulation A) the 
velocities of all the particles are initially equal to zero and the positions 
are respectively x I = -15 ,  x2 = 6.5 and X 3 ~ -  8.5 in arbitrary units. The 
fitting is not good at all and the position distribution function looks like the 
superposition of two curves of systems containing each two particles. 

Other simulations with different initial conditions have been performed 
but neither give a good agreement with the Rybicki curves. 

Consequently it may exists, in addition with the three invariants, another 
constraint which prevents the system to be ergodic. 
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Fig. 2. Trajectories of the three particles for simulation A 

2.2 C o n c e p t  o f  M o l e c u l e  

A simple look at the trajectories of  the three particles of  s imulat ion A helps 
us to see what  happen  (see Fig. 2). In fact, two particles make a "couple" 
which does not  break at least after 107 crossings. Such a s i tuat ion is more 
or less well observed for a large range of  initial conditions. The  topological  
order dur ing the evolution of  the sys tem gives us an operat ional  diagnostic 
to know whether  a molecule still exists. Suppose molecule 2 • 3 is formed. 
Then,  the molecule still exists if, particle 1, when entering by one side of  the 
molecule (particle 2 or 3) goes out  by the other  side (particle 3 or 2). As long 
as this s i tuat ion is preserved we will say tha t  molecule 2 • 3 exists and we 
will call "topological  invariant" this existence. For example,  the order of the 
three particles for s imulat ion A is given in Table 1. 

We can also define the internal energy of  the molecule which is the energy 
of  the two particles of  the molecule in its own frame. This expression reads: 

U23 1 = ~(v2 - v3) 2 + 2~lx2 - x3l (1) 

The  value of  U23 is conserved as long as particle 1 is outside the molecule 
and takes a new value after particle 1 has entered and then left the molecule. 
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Table 1. Sequence of the relative positions of the three particles for simulation A 

3 2 2 ~ 3 3 2 3 2 2 ~ 2 2 3 2 3 3 ~ 2 2 3 2  
2 3 ~ 2 3 2 3 ~ 2 3 2 3 ~ 2 3 2 ~ 3 2 3 2 ~ 3 2 3 2 ~ 3 2 3  

( ~ 3 3 2 3 2 2 ~ 3 3 2 3 3 ( ~ ) ( ~ 2 2 3 2 3 3 ( ~ ) ~  

Table 2. Sequence of the relative position of the three particles for simulation B 
before the topological invariant breaks. 

q ~ i ) 3 3 2 2 ® . . . ( i ~ 2 2 3 3 ~ 2 2 3 3 ( 1 ~ 2 2 3 3 ( I ~ 2 ¢  
2 3 ® 2 3 ® 2  . . . 3 2 0 3 2 ( ! ) ~  2 ( D 3 2 ( ! ) 3  ~ ( I ) 3 2 ® 3 2 ® 2  
3 2 2<D(D3 3 ...2 3 ~(D(D2 2 3 3(I)(D2 2 a 3(D(D2 2 3 3 3 
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Figure 3 gives a small time interval of the variation of U23 for simulation A. 
It oscillates between the two values given by the figure for all the simulation 
time. Nevertheless, this quiet situation is not a rule and the life of the molecule 
is sometimes very strange. We start another simulation (simulation B) with 
xl = -15 ,  x2 = 0.37, x3 = 14.63 with the three velocities set initially to zero. 
Table 2 gives the order of the particles and Fig. 4 the internal energy, until the 
topological invariant breaks, (that is the molecule breaks). At the beginning 
the internal energy oscillates slightly as for the previous stable molecule of 
simulation A. Suddenly it increases twice but the topological invariant is not 
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Fig. 5. a" Number of excitations (passage of particle I through the molecule 2 • 3) 
necessary to destroy the topological invariant as a function of the initiM position of 
particle 2. b= Zoom of a small part of curve 5a dclimited by the two dotted lines. 
c-" Zoom of a small part of curve 5b delimitcd by the dotted lincs 

destroyed and the initial values are recovered after a few time. Nevertheless, 
despite a strong regularity of U23, the molecule breaks suddenly after 146 
excitations (passage of particle 1 into molecule 2 .3 ) .  

The stability of the topological invariant is also a very curious thing. We 
performed a lot of simulations starting with velocities initially equal to zero 
and the position of particle 2 taken equal to z2 > 0, particle 1 being initially 
localized at xl  -- 15 and x3 = - x 2  - x3. This restrictive initial conditions 
allow us to decide a priori that  the molecule is formed by particles 2 and 3. 

For each simulation we count the number excitations (passage of particle 
1 through the molecule) until the topological invariant breaks (see Fig. 53). 
If initial position of particle 2 is bigger than 0.6, the topological invariant is 
not destroyed after 107 excitations and if x2 < 0.6 the number of excitations 
depends strongly on initial conditions. Zooming a small part of this curve 
and reiterating once more this process we obtain Figs. 5b and 5c which have 
more or less the same behaviour, indicating that it has fractal properties. 
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3. C o n c l u s i o n  

The existence of the very strong binary structure (molecule) prevents the 
system to be ergodic and consequently the Rybicki curves are not recov- 
ered. Unfortunately, the mechanism which keeps such a regularity is not yet 
understood. 

Nevertheless, numerical simulations allow us to imagine processes which, 
al though non physical give useful indications; such is the case of the following 
experience: as the total  energy, which is one of the invariant of the problem, 
does not depend of the position of the central particle, we can change from 
t ime to t ime this value. Here we relocate particle 2 at random between xl 
and x3 while v2 remains the same. This, of course, is a very efficient way 
to destroy the molecule. In addition, the positions of the three particles are 
shifted in order not to change the position of the center of mass. 

Adding this process to the program, the numerical results fit now the 
theoretical curves showing that  the binary structure effectively is responsible 
of the previous misfit (cf. Fig. 6). 
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Finally, we formulate the following hypothesis: the N-body  problem is 
not perfectly ergodic while it exhibits more and more complex structures as 
N increases. Nevertheless, when N is sufficiently high it will be difficult to 
determine by computer  simulation whether the system is ergodic or not. 

A c k n o w l e g d m e n t s .  The authors thank L. Blanchet for interesting discussions 
on this topic. 
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Abstract. The collisionless limit of the N-body problem is often justified 
by the long 2-body relaxation time. Several other possibilities exist by which 
stellar systems can evolve and relax faster than previously expected. In partic- 
ular observations and numerical experiments suggest that fractal distribution 
functions can spontaneously occur. The understanding of the complex evo- 
lution of N-body systems such as galaxies requires presently complementary 
paradigms. 

1. Mode l l ing  Stellar S y s t e m s  

1.1 Epistemological Remark 

The scientific process of gaining knowledge about nature (and, more generally, 
about  complex systems, such as chess) always needs the invention of models 
(also called theories), which have the purposes both to reduce nature com- 
plexity to a level that  at least some human beings can manage, and to select 
out the most essential aspects of the investigated processes. Therefore mod- 
els never match exactly nature since some aspects of reality are deliberately 
discarded, but  the abstraction reached in models focuses on the "deeper" (in 
some sense "truer") properties of nature. On the other hand, by construction 
modelling will always be a process at the level of some human intelligence. 
In this view, the possibility of "understanding" parts of nature is no wonder 
because we select out the aspects of it that  we are able to describe in our 
own words. 

Since models truncate reality, scientists have to find out t h e  conditions 
when the models are falsified, i.e. to specify the limits when the models stop to 
apply. "Wrong" theories have a narrow, or no scope of applicability, "good" 
theories a broad one. Absolutely "right" theories can only be invented for 
systems simple enough to be encompassed by our finite intelligence. Perhaps 
a complete theory of chess will be invented some day, but the prospects to set 
up completely right theories of many natural systems are slim due to their 
enormous complexity. 



202 Daniel PFENNIGER 

The Newtonian N-body model of stellar systems is not an exception. 
Nowadays Newton's laws are no longer taken as absolutely true, yet the N- 
body model is still useful because it is thought to apply well for long times to 
real stellar systems. But the complete understanding of the N-body problem 
in no way would stop the modelling of stellar systems, which are much richer 
in phenomenons that N point masses. Since the N-body model, expressed 
by a particular system of differential equations, is already too complex to 
understand completely, scientists have applied to it the scientific method 
applied to nature, by making models of the N-body  model. 

One of these models of the N-body model for large N is the collisionless 
limit described by the collisionless Boltzmann equation (CBE), which trans- 
forms the problem into an integro-differential equation, so using the formal 
language of mathematics.  

Another class of formal systems is provided by various computer models. 
Numerical computer models have not reached today the esteem that analysis 
enjoys, in large part  because round-off errors introduce some fuzziness in re- 
sults. Yet computers should not be identified with floating number crunching 
devices. In many cases computers can manipulate symbols as rigorously as 
trained mathematicians 1. In such cases, often with discrete models, computer 
models can compete in efficiency (with, e.g., differential equation models) for 
representing complex systems. 

So when the divergence between a natural stellar system and an analyt- 
ical N-body  model is as large as the divergence with a discrete computer 
model, both models should be  considered as useful; indeed both models are 
increasingly wrong at the same rate. 

1.2 H i s t o r i c a l  R e m a r k  

Since the pioneer works in the sixties ofvon Hoerner, Miller, van Albada, Hohl, 
Hockney, Prendergast and many others, numerical simulations of galaxies 
have been performed with the aim to reproduce the collisionless limit at which 
the collisionless Boltzmann equation (CBE) was and is still supposed to apply. 
Most of these simulations are thought to model the large scale gravitation of 
galaxies. But the number of particles that can be tackled with present day 
computers is only about the square root of the number of stars in galaxies, 
so it has been realised soon that the discrepancy should be investigated, and 
the unwanted effects of numerical simulations minimised, when possible. 

In the early simulations of galaxies, several results have been obtained, 
but due to the limited amount  of independent works and the restricted ex- 
ploration of the free parameters, it was not clear whether particular results 
would be general, or whether they would be the consequence of numerical 

For example computer algebra may deal with irrational numbers as precisely 
as human beings do (e.g., it simplifies V~ 2 by 2, while floating-point number 
arithmetic may give 1.99999). 
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artifacts. Therefore the astronomical community did not fully appreciate the 
generality of some early results. With the years we can stand back and make 
some kind of synthesis of the past experiments. In particular several N-body 
results were going against the image people had of galaxies, or the admitted 
paradigm of the collisionless approximation: 

1. Disc galaxy models tend to make a bar, while the general prejudice was 
that stable disc galaxies should be axisymmetric. This leads to the ideas 
that evolution can be driven by large scale instabilities (symmetry break- 
ing) much faster than 2-body relaxation, and the most natural states are 
not always the ones with the highest degree of symmetry. 

2. Disc N-body  simulations are highly "live", because spiral discs are 
marginally stable against radial instability. Consequently the assumed 
steady state of spiral arms is difficult to maintain for many Gyr. More 
realistically, disc galaxies seems today to constantly generate evanescent 
spiral arms, and to "swing'-amplify perturbations to large scale. Again 
this liveliness of galactic diks clashes with a slow evolution of discs driven 
by 2-body relaxation. 

3. N-body particles, like stars in the solar neighbourhood (Wielen 1977; 
Fuchs et al., this volume), do not conserve well their expected integrals 
of motion (van Albada 1986). The observational fact of stellar diffusion, 
i.e. increase of oscillation amplitudes about circular orbits as a function of 
stellar ages with a rate similar to the orbital period, invalidates strongly 
the collisionless model for the Galaxy. The particle diffusion in numerical 
experiments, sometimes viewed as a defect of the numerical methods, has 
the advantage, at least qualitatively, to resemble reality in this aspect. 

Therefore time has come to reexamine whether classical assumptions 
about the collisionless approximation of the N-body problem are effectively 
relevant. The qualifier "collisionless" is sometimes quoted, since this property 
is generally more believed than demonstrated to apply. Fortunately, and con- 
trary to galaxies, computer N-body models can be experimented with and 
the collision properties can be investigated. 

2. Difficulties with the Collisionless Approximation 

2.1. E x i s t e n c e  o f  S m o o t h  D e n s i t y  or  D i s t r i b u t i o n  F u n c t i o n s  

It is rarely explicitly stated that the mere ezistence of differentiable mass 
distributions p(x), and even more distribution functions (DF) f (x ,  v) is gen- 
erally assumed to apply but not verified to exist in real stellar systems. While 
the reason of the smoothness of common fluids can be understood intuitively 
by the fast collisional amplification of perturbations ("molecular chaos"), we 
lack of such an argument for stellar systems. 
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Also it is difficult to test whether a smooth density model is relevant in 
real stellar systems, because, except for the solar neighbourhood, only pro- 
jections of mass distributions are observed. DF 's  are also seen in projection, 
with perhaps only the projection of the first and second velocity moments  
along the line of sight being accessible. In the case of our Galaxy, we have 
access to a more detailed information, but the opposite evidences of frequent 
hierarchical mass distributions are ubiquitous, such as multiple bound stars, 
groups, clusters, star streams, etc., suggesting rather inhomogeneous models 
of stellar distributions. 

Since stars originate from the cold interstellar medium, it is naturM that  
young stars keep for some t ime the memory  of their initial birth conditions. 
In the recent years, it has been realised that  this cold gas is better described 
by a fractal model over a range of scales of at least 104, with 0.01 pc < r < 
100pc (Scalo 1990; Falgarone 1992; Pfenniger & Combes 1994). A fractal 
mass distribution in a metric space follows a scaling relation between the 
mass M and the length-scale r (Mandelbrot 1982): 

M ( r )  ~ r D , (1) 

with D defining the fractal dimension. Observations of the cold interstellar 
medium suggest 1.4 ~ D ~< 2, while a smooth gas would have D = 3. For 
a DF, the same relation holds in the 6D phase space, where r is a distance 
in phase-space. As soon as D is smaller than the space dimension, in general 
discontinuities arise in the mass distribution which invalidate a differentiable 
model. 

I t  is sometimes wrongly believed that  an integer D implies a corresponding 
topological dimension, e.g. D = 2 for cold gas in space would mean that  the 
mass distribution is sheet-like. In fact an integer D just describes the scaling 
of mass with distance, so D constraints very little the smoothness of the 
distribution. 

A theorem (cf. Falconer 1990, Chap. 6) about  the fractal dimension of pro- 
jections of fractal sets states that  if the fractal set has a dimension smaller 
than the projection space, then the projection has in general the same di- 
mension as the fractal set, while if the fractal set has a dimension larger 
than the projection space, then the projection has in general the dimension 
of the projection space. Clearly in a stellar system a fractal density implies 
a non-differentiable DF, which implies that  the CBE is not applicable. The 
converse is not necessarily true. But if the dimension of a fractal DF is larger 
or equal to 3, then the fractal dimension of the mass distribution is in general 
3, so may  look relatively smooth. So by observing only mass distributions, 
and even more so by observing projections of them, we may miss the fact 
that  the DF is not differentiable. 

An academic example of an equilibrium self-consistent stellar system with 
a fractal DF but a smooth  density is a smooth disc made of stars on direct and 
retrograde circular orbits, the fraction of retrograde orbits being distributed 
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in radius as a Cantor  set. Many more examples like this can be invented, 
showing that  among all the possible systems smooth stellar systems form 
an exceptional class; we know of no compelling reason which would oblige 
natural  systems to belong to the class of differentiable systems. 

On the experimental  point of view, simulations of "collisionless" parti- 
cles also suggest tha t  highly inhomogeneous mass distributions occur spon- 
taneously in some cases. For example the Toomre ~ Kalnajs (1991) shearing 
sheets experiments represent a small portion of a marginally stable disc. The 
particles, each one representing a population of stars, develop long-range cor- 
relations, suggesting a scaling law and a fractal distribution. If more particles 
would be run at higher resolution, one expects that  the scaling relations would 
then extent over a wider range. In the limit of an infinite N the system would 
be a mathemat ica l  fractal or a multifractal.  In such situations the differentia- 
bility of the DF is highly questionable since there is no small scale at which 
a smooth  distribution is a good approximation.  

Therefore it is perfectly possible that  in several cases a bet ter  represen- 
ta t ion of the stellar distribution might  be fractal, or even more complicated. 
But if stellar distributions are sometimes hierarchical the basic assumptions 
of classical stellar dynamics have to be reexamined. First of all, the tools 
of calculus such as differential equations are no longer applicable. By simple 
arguments  (Pfenniger ~: Combes 1994), it is easy to show that  in a scale- 
free hierarchical system the interactions between clusters at the same level of 
the hierarchy may  increase considerably the collisional character of the sys- 
tem. If  such a system is virialised at each level, the dynamical  t ime Vayn and 
the physical collision t ime rcol scale with a power depending on the fractal 
dimension D 

Tdy n ~ r(3-D)/2 ~ Tc°l r2-D 
Tool ~,~ r(7_3D)/2 J ~ --Tdyn ' ~  . ( 2 )  

When D > 2 the system is collision dominated,  and the transition occurs at 
D = 2 .  

As an illustration let us consider a stellar system such as the optical part  
of our Galaxy that  we suppose made by a uniform distribution of stars. The 
mass of the star  distribution scales as the cube of the size so D = 3, but 
the previous relations so not apply because star subsets are not in virial 
equilibrium. If  we consider the galaxy and the stellar distribution as a one 
level hierarchical system, the Galaxy being supposed in virial equilibrium, 
the fractal dimension of the ensemble is then given by 

= log(igal/Mstar)/log(rgal/rst~r), (3) D 

which gives a dimension D ~ 1. Similar considerations for galaxy clusters 
and super-clusters give D ~ 1.2 (Coleman & Pietronero 1992). So in this 
view of the Galaxy the physical collision t ime exceeds the dynamical  t ime 
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by a factor Tcol/Tdyn -~- rga l / r s t a r  ~'~ 1011, But if our Galaxy would be made 
purely of molecular clouds with a mass Mm¢ -- 5 • 105 stars, each one with a 
size rmc - ' - -  30 pc, the dimension would be D ~ 2.8, and the time ratio would 
drop to T¢ol/rdyn "~ 0.025: the system would be essentially collisional. Thus 
we see that  a hierarchical organisation can change drastically the collisional 
character of stellar systems. Similar considerations can be made with the 
2-body relaxation time. 

2.2. Sensit ivi ty  o f  Orbits in Smooth  Densi ty  Models  

Even if the density p(x) is differentiable, it does not mean that the stellar 
system is truly collisionless over time-scales larger than the age of the Uni- 
verse. We discuss here another instance where the scope of collisionless stellar 
dynamics is narrowed. 

In the original approach of Chandrasekhar (1941, 1943) the relaxation 
time is not an intrinsic physical effect, it is an estimate of the shortest time- 
scale after which the eollisionless model is no longer valid. So in principle, the 
collisionless approximation can be invalidated if, for any reason, the trajec- 
tory of a sizable fraction of particles in a smooth mass distribution is shown to 
deviate significantly from the trajectory they would have in the correspond- 
ing N-body representation. Chandrasekhar estimated the relaxation time of 
a stationary stellar system would be the fastest b y  2-body encounters, so he 
neglected the effects of the mean field, and collective effects. 

By considering only a uniform infinite density distribution, the class of 
potentials is restricted to the exceptional class of integrable potentials. Today 
we know that  generic potentials are non-integrable. They contain resonances 
and a positive measure of chaotic orbits which amplify exponentially any 
perturbation of the smooth mean-field model. So integrable systems miss an 
important  feature of generic systems. 

In a particular case of a barred galaxy potential the perturbation due to 
a single star has been found to be able to relax (in the above sense) typical 
chaotic orbits in a much shorter time than galaxy ages (Pfenniger 1986). In 
contrast quasi-periodic orbits resist much longer. The orbits in the smooth 
model deviate from "reality" (N-body model) with a time-scale given by 

, o r b _  1 +  , (4 )  

where "~m~x is the largest Liapunov exponent of the orbit, v the typical stellar 
velocity, and a the typical amplitude of perturbing accelerations. To deter- 
mine how long the smooth model is applicable requires the knowledge of the 
sensitivity of the orbit, given by -~m~x, but also of an estimate of the typi- 
cal level of perturbations a that  is present in a real galaxy. In galaxies this 
level of perturbations is mainly determined by the large "grains", such as the 
globular clusters, molecular clouds and HI complexes. 
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Similar conclusions were reached in a subsequent work (Udry & Pfenniger 
1988) in which it was shown that  the average Kolmogorov entropy (h = 
~ i > o  Ai, where Ai are the 6 Liapunov exponents of an orbit) of a set of 
orbits in elliptical galaxy models leads to a time-scale (h) -1 of the order of 
the galaxy age. 

These examples show that the growth of perturbations between the 
smooth model of a N-body system and the real stellar system is sufficiently 
fast to invalidate the initial assumptions of long relaxation time. This does 
not mean that  the real system will evolve with the time-scale Torb, because 
collective effects are not directly related with the individual orbit stability 
properties, but  it means only that  a new limit occurs when considering a 
collisionless model of stellar systems with non-integrable potentials. 

2.3. Phase Mixing in Steady Potentials 

If one defines an orbit as the subset of phase-space reached over plus and 
minus an infinite t ime by the trajectory starting at a particular point, an 
orbit is by construction a time-invariant subset of phase-space. Thus orbits 
defined as such are the elementary building blocks of a steady collisionless 
stellar system. 

Suppose we have a stable collisionless stellar system in equilibrium. If a 
small perturbation is exercised onto it, by definition of stability, we expect 
that  it oscillates around its equilibrium or recovers its steady state with a 
typical time-scale. 

If the collisionless system is purely made of quasi-periodic orbits (tori in 
phase-space), we expect by the KAM-theorem that  a typical small pertur- 
bation preserves most of the tori, but it can perturb their uniform density. 
In order to recover a steady state, every tori should be time independent by 
being uniformly populated by stars. So the time required to recover a steady 
state can be estimated by the time to phase-mix a delta function on the tori, 
assuming uo collective effect. The same argument can be applied to the other 
type of orbits with a positive measure, the irregular orbits, which are defined 
as the orbits which are not periodic or quasi-periodic orbits. 

Since arbitrary potentials are generally not integrable, some positive mea- 
sure of orbits is chaotic. The question is to characterise the mixing rate on 
different orbit types. 

For measuring experimentally the mixing time, we performed numerical 
computations with non-integrable galactic potentials and the standard map 
(Pfenniger 1984, 1985). The intrinsic mixing time of orbits is measured by 
the following procedure: 

1. A particular orbit is integrated over a time T, and the fraction of time 
spend in each cell (called the "occupation" by Schwarzschild, 1979) of a 
rectangular grid in the configuration or phase spaces is computed. 
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Fig.  1. Fluctuations in the standard map x' = z + Ksin(x + y), y~ = x + y, as a 
function of the number of iterations. At the top is shown the final area filled by 
219 iterations for a) g -- - 1 ,  (x0, y0) ---= (0, 2) (quasi-periodic orbit), b) It" -- 1.8, 
(x0, y0) ---- (0, 0.01) (nearly ergodic orbit), c) g----0.3,  (s0, y0) = (0,0.01) (weakly 
ergodic orbit). At the bot tom the measure of the fluctuation max(ABq)  is shown 
for cartesian grids with different resolutions: (large cross) (48 x 48), (large square) 
(24 × 24), (sm~U cross) (12 × 12), (sm~U square) (6 × 6), (dot) (3 × 3) 

2. After  the t ime  T the same  calculat ion is cont inued in a second fresh grid 
for the s ame  t ime  T.  

3. T h e  cell occupa t ion  in the two grids is then compared•  The  largest  abso- 
lute difference of  all the cell occupat ions  is taken as a vo lume independent  
e s t ima te  of  the  fluctuations• 

4. T h e  two grids of  occupat ions  are averaged and the result  is s tored in the 
first grid. T h e  second grid is zeroed. 

5. T h e  calcula t ion is cont inued for twice the previous to ta l  t ime  and the 
cell occupa t ions  are s tored in the second grid. The  process is repeated  a t  
3 ,  each t ime  doubl ing the previous in tegra t ion  t ime,  until  a f luctuat ion 
threshold  is reached. 

In this way we can measure  how fast a par t icu lar  orbi t  mixes for a given 
spat ia l  resolution• The  result  for grids with lower spat ia l  resolutions can easily 
be found f rom the highest  resolut ion grid by averaging the orbit  occupat ions  
in cont iguous grid cells. After  having  calculated in this way the f luctuat ions 
of  a large sample  of  different orbits,  a few dist inctive results emerge (see 
Fig. 1): 
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1. Most quasi-periodic orbits mix fast, the exceptions being obviously the 
near resonant ones, which can require an arbitrarily long time to cover 
their torus uniformly. 

2. Strongly chaotic orbits with an extended occupation of phase space mix 
somewhat slower than quasi-periodic ones, principally because they fill a 
larger volume of phase-space. These orbits jump frequently near any point 
of the accessible region so the mixing at a finite grid resolution appears 
as relatively fast. 

3. Weakly chaotic orbits can mix arbitrarily slowly because their chaotic 
region is riddled with cantori. Cantori holds orbits in a macroscopic region 
for arbi t rary long times, so when such an orbit escapes into another region, 
the occupation of phase-space varies strongly. 

Therefore weak chaotic motion can invalidate the assumption of steadi- 
ness of the collisionless approximation because perturbations on individual 
phase space invariant blocks (the orbits) are not damped rapidly. This sug- 
gests that  stable "collisionless" models require not necessarily pure integrable 
potentials, but, more generally, rapidly mixing orbits. 

2.4. No i se  in Par t i c l e -Mesh  N - B o d y  Mod e l s  

Particle-Mesh N-body  models are thought to represent well galaxies because, 
though N is only about  the square root of the number of stars, softening the 
short range forces decreases the effect of nearby particle encounters. Hohl 
(1973) has tested that  when properly set N-body  galaxy simulations do not 
have mass segregation for more than several Gyr. So for the aspect of mass 
segregation N-body  simulations behave as galaxies are expected to behave. 

Yet van Albada (1986) has pointed out that  individual particles trajecto- 
ries of N-body  simulations diffuse in action space much faster than expected 
for a truly collisionless system. This diffusion in action space is actually as 
fast as the one observed in the Milky-Way for stars born near circular orbits 
(Wielen's diffusion, 1977). So N-body particles as well as stars do not behave 
as it is commonly thought they should behave in collisionless stellar systems. 

During such Particle-Mesh N-body simulations of disc galaxies (Pfenniger 
& Friedli 1991) we have tested the following, not described in the paper: 
during a run of a virialised galaxy model we consider at a chosen point in 
space separately the potential and forces produced by all the particles within 
and beyond a radius c, which defines the "near" and "far" regions of particle 
interactions. The radius ¢ is equal to the local softening length, which is of 
the order of the local grid cell size. After several dynamical times of evolution 
we Fourier transform the time-series of the forces resulting from respectively 
the near and far components. The general result is simple: the high-frequency 
power, the "noise", induced by the far component is typically larger or at least 
as much important  than the high-frequency power from the near component 
(Fig. 2). High frequencies are defined as the frequencies higher than the one 
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Fig.  2. Power spectrum of the forces of the "far" (top) and "near" (middle) com- 
ponents of a disc galaxy N-body simulation s (N = 2 - 10 ) at a location in the disc 
plane (z = 0) and at a radius of the order of twice the disc length scale (R = 7). The 
softening radius e is 1.32 there. At the bottom the power ratio is shown averaged 
over an interval in T/t of 10. The time t belongs to the interval 0.5 < t < T = 500. 
In comparison the dynamical time amounts to ~ 100. Clearly the far component of 
the forces has at least as much high-frequency power at the near component 

given by the model  dynamica l  t ime, but  lower than the one given by the 
integrat ion t ime-step.  

This  means  tha t  the noise reduct ion achieved by the softening of  the 
nearby interact ions has reached a level below the one due to long range 
interactions.  A larger softening of  the local forces is not  going to improve 
much the noise level, because the softening softens the near encounters, but  
not  the much  more  numerous  far encounters.  

Therefore the collisionless nature  of  "collisionless" N - b o d y  systems is 
par t ly  illusory because in typical  models  the fast long range force fluctua- 
t ions contain more  power in high frequencies than  the short  range ones. The 
only known way to decrease the force f luctuations due to the far component  
is, presently, to  increase the number  of  particles. This is a very inefficient way 
for future progress. 

In  galaxies softening m a y  be justified on physical  grounds. It  can be seen 
as a judicious approx ima t ion  based on energetics: in galaxies, stellar regions 
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smaller than the softening length contain much more kinetic energy than 
self-gravitational energy. At this scale (,-~ 100 pc) gravitation plays a little 
rSle with respect to the kinetic pressure, the local system is automatically 
in equilibrium and stable with respect to its own gravitation (in other words 
its Jeans length is larger than the softening length). Therefore short range 
gravitational interactions can be neglected, justifying the use of grids. With 
well chosen grids efficient Poisson solvers exist, e.g. using FFT techniques. 

3. O r d e r  and  C h a o s  in N - b o d y  S i m u l a t i o n s  

We know from observations and from N-body simulations that galaxies come 
in a restricted variety of shapes, which suggested to gubble his famous se- 
quence. We have global systematic attractors in these Hamiltonian systems, 
though the term "attractor" is usually well understood for dissipative sys- 
tems. When a collisionless ensemble of stars relaxes collectively, if it is slowly 
rotating it takes either a triaxial log S ~ r 1/4 de Vaucouleurs profile, where 
S is the projected density (van Albada 1982), or if it is rapidly rotating in an 
initial disc shape, it forms a rotating bar which subsequently rearrange the 
outer disc profile into an exponential shape (Hohl 1971) similar to the ob- 
served galaxy optical discs (Freernan 1970). Why these shapes are preferred 
is today unclear, but their appearance both in nature and in N-body models 
suggest a simple underlying principle. 

3.1. Stellar Disc Evolution 

Typical N-body simulations of equilibrium discs representing galaxies evolve 
so that  the disc forms a rotating bar as large as the turnover radius of the 
solid body part of the rotation curve, and evanescent spiral arms in the outer 
disc. After a few rotations, a bar can be unstable with respect to a bending 
instability t ransverse  to the disc plane forming a peanut-shaped bar that  
looks like a boxy bulge when the galaxy model is seen on edge. Many aspects 
of these N-body bulges resemble observed peanut-shaped bulges (Friedli dr 
Pfenniger 1990), such as the density profile. The peanut formation by bars 
was first discovered by Combes & Sanders (1981), and further studied by 
Combes et al. (1990), Pfenniger dr Friedli (1991), and by Raha et al. (1991). 
This phenomenon will serve as an illustrative example how different existing 
paradigms can be used for understanding it. 

The shape of rotating bars is not random too. In particular the box- 
peanut shape of bars, that  can be called "bulge" depending on the viewing 
point, is also not explained theoretically. The phase-space structure of these 
objects possesses a series of singular properties (Pfenniger 1990; Pfenniger dr 
Friedli 1991). For example the Lagrangian points L4,5 tend to be marginally 
stable, the Inner Lindblad Resonance tends to be marginally present, the 
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Fig. 3. A N-body model of disc galaxy forms spontaneously a bar, that is subject 
then to a bending instability perpendicular to the galactic plane. This bending 
instability saturates with a peanut shape when seen on edge, shown on the left 
(Combes et al. 1990, Pfenniger & Friedli 1991). The peanut shape can be understood 
by the existence of 2/2/1 periodic orbits. On the right is shown the peanut-shaped 
galaxy NGC 128 in the R band (Jarvis 1990). In both frames the isophotes are 
spaced by half a magnitude (a factor ~ 1.6) 

not populated retrograde family of periodic orbits is vertically unstable over 
a wide range of the characteristics relevant to the bar, the bump in the 
peanut-shaped bar occurs at the location (in phase-space) of a 2/1 vertical 
resonance of the direct periodic orbits. 

4. Understanding N-body  Simulations 

As for natural phenomenons, after the mere description of N-body runs we 
need more explanations for improving our understanding of them. Below we 
describe two paradigms that have been applied in the past years. 
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4.1 Paradigm a): the Linearised CBE 

The peanut-shaped bar formation is explained by Raha et al. (1991), Sellwood 
(1992) with the help of the CBE paradigm applied to the simpler situation of 
an infinite homogeneous and non-rotating sheet. It can be shown that when 
the velocity dispersion parallel to the sheet is about ten times the one per- 
pendicular to the sheet, in the linear regime a bending instability is triggered; 
it is called the "fire-hose" instability (see e.g. Fridman & Polyachenko 1984). 

In contrast the N-body model is inhomogeneous, finite, rotating, and from 
our experiments it does not need to fulfill the fire-hose instability criterion in 
order to bend. 

Since the bending instability goes rapidly beyond the linear regime, the 
fire-hose instability analogy can not help for understanding the subsequent 
evolution. The justification to identify the N-body run behaviour and the 
infinite slab one as similar relies basically on the knowledge of the type of 
particle motion, i.e. on the orbits: in both cases we have elongated orbits 
along the plane. 

Ideally, for applying this approach to the N-body collisionless model, one 
should have a self-consistent DF on which one could calculate the growing 
modes with the coupled CBE and Poisson's equation. The advantage would 
be that the effect of self-gravity would be included and a broad class of 
instabilities could be investigated (yet the N-body exponential instability is 
suppressed by the collisionless hypothesis). But even in this ideal case, only 
the linear regime can be reasonably described. The final explanation is given 
in term of the key-word "mode": such and such instability occurs because a 
corresponding growing mode exists. 

In summary the CBE is in principle a very useful tool able to describe 
many aspects of N-body collisionless models. Yet the difficulties of its appli- 
cations are formidable, and in any case, the solution of the linearised CBE- 
Poisson equation is always an incomplete description. 

4.2 Paradigm b): Periodic Orb i t s  

Poincar~ (1892), when considering the general problem of solving sets of dif- 
ferential equations such as the N-body problem understood that the richness 
of the solutions was much too broad to be fully described by a finite number 
of terms. Therefore he proposed a strategy for describing phase space: first 
enumerate the fixed points, and then the periodic orbits (PO). Around the 
stable periodic orbits other orbits have similar topological properties, so their 
description is a way to summarise the complexity of dynamical systems. The 
mental economy made offers a partial "explanation" h la Mach. 

The generality of the main PO's in galactic potentials is insufficiently 
appreciated. The main PO shapes depend only on the symmetries of the 
potential: for example in St~ckel potentials the shape of the orbits is inde- 
pendent on the particular St£ckel potential since they can be found knowing 
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only the particular choice of ellipsoidal coordinates (see de Zeeuw 1985). As 
corollary the same applies in cartesian, spheroidal and spherical coordinates. 

The robustness of PO's is also to mention. When the potential of a galaxy 
model is perturbed with low spatial frequencies, the main PO's are hardly 
changed, contrary to the density which depends on the second derivatives 
of the potentiM. Thus for studying the PO's in galactic potentials it is not 
necessary to know precisely the mass distribution, but the main symmetries 
of the galaxy. 

But for high spatial frequency perturbations of the potential exactly along 
an orbit this is no longer true, a small perturbation may strongly perturb the 
orbit stability or the orbit shape (Martinet & Pfenniger 1987). 

For weak dissipative perturbations, stable PO's and fixed points are also 
robust in the sense that  the trajectories diverge from the unperturbed trajec- 
tories much slower than other orbits (Pfenniger ~= Norman 1990). They can 
even become attractors in the dissipative regime. 

So in general PO's and fixed points are the main structures to look at 
when considering possible perturbations to a stable stellar system. If the 
perturbation is a low frequency change of the potential, one can be confident 
that  the effect on the main PO's will be small. On the contrary if a high- 
frequency perturbation acts precisely on the path of important PO's, a drastic 
change in the stellar system may result. 

For example the keystone of a triaxial stellar system regular near the cen- 
tre is the origin, because the main PO's, the axial orbits, can be destabilized 
by the accumulation of a small mass near the centre. 

Another example results from the knowledge of the PO's in a rotating bar 
potential (Contopoulos &: Papayannopoulos 1980, Athanassoula et al. 1983). 
A rotating bar is possible because in a well defined range of conditions major 
PO's elongated along the bar exist. But when the central density increases, 
these elongated orbits are replaced by PO's perpendicular to the bar. Beyond 
a critical central mass concentration no self-consistent bar is possible, and a 
real bar has to dissolve. This is an important process of galaxy evolution 
leading to understand the transformation of barred galaxies into non-barred 
ones, and the possible build-up of bulges after the disc formation (Hasan &= 
Norman 1990; Pfenniger & Norman 1990; Hasan, Pfenniger & Norman 1993). 

In the case of the orbital structure of the peanut-shaped bars, we have 
shown that  the bending instability is intimately linked with a 2/1 vertical res- 
onance of the elongated PO's supporting the bar (Pfenniger & Friedli 1991). 
This orbital resonance exists before and after the growth of the bending 
instability, and its location coincides with the one of the instability. The bi- 
furcating orbits associated with the resonances trap the non-linear saturation 
phase of the bending instability, explaining the final peanut shape. 

The advantages of using PO's as paradigms for understanding complex 
stellar systems are: accurate potential models are not required, the PO's are 
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independent of a particular DF and its differentiability, the integrability of 
the potential is not necessary. 

The disadvantages are that self-gravity effects are not included, and the 
self-consistency of the potential is not guaranteed (not any potential can be 
a solution of Poisson's equation since gravitational charges must be positive). 

4.3 Summary 

We don't  have a strong enough paradigm to describe the full complexity of 
stellar systems such as galaxies. We have seen in the particular case of the 
bending instability of bars that we need more than paradigms a) and b) to 
understand galaxies in detail. For the present time paradigm a) and b) are 
necessary and complementary. 

5. C o n c l u s i o n s  

The full understanding of the N-body problem in no way would stop our quest 
of explanations about  stellar systems. N-body systems are rich in instabilities 
at all scales, from the "microscopic" exponential instability of the N-body 
problem much discussed at this conference, to the macroscopic bar instability. 
Each instability is a new source of chaos, and an opportunity for the system 
to evolve. Often models break down when the sensitivity to perturbations is 
exacerbated by instabilities. ~¥e need to enlarge the concept of "relaxation 
time" by the more general description of the various evolution time-scales. 
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On the  Permiss ib le  Percentage  of  Chaot ic  
Orbits  in Various Morpholog ica l  Types  of  
Galaxies  

L. MARTINET 

Geneva Observatory, CH-1290 Sauverny, Switzerland 

A b s t r a c t .  During the recent years, a lot of papers have dealt with the 
triggering and growth of chaotic orbital behaviour in dynamical models of 
galaxies. A question remains still open: Which is the tolerable percentage 
of chaotic orbits in self-gravitating equilibrium models describing the various 
morphologies of observed galaxies? Selected results will be presented as a step 
towards the understanding of this question. They concern triaxial systems 
such as barred and elliptical galaxies. 

1. I n t r o d u c t i o n  

Orbital approaches are complementary to other ways of analysing the struc- 
ture and the evolution of galaxies. They provide detailed information about 
dynamical phenomena taking place within them such as the existence of ro- 
bust stable periodic orbits and the amount  of mat ter  t rapped around them, 
or still different kinds of instabilities able to trigger chaotic behaviours. In- 
ferences on self-gravitation and global evolutionary aspects are not decisive 
from such approaches, which are nevertheless useful as prerequisite to the 
construction of self-gravitating models. 

Roughly spoken, a system is called ergodic if any trajectory (except for 
a set of null measure) fills densely its energy surface. The sequence of points 
in a space of section, corresponding to such an ergodic trajectory would fill 
densely the space of section. In spite of the widely-held use of the term of 
"ergodicity" in works dealing with galactic dynamics problems, ergodic orbits 
strictly as such, are not found in smooth "realistic" as well as in noisy models 
of galaxies. Apart  from very peculiar cases (see below), at the very most we 
may speak about  chaotic behaviour in s o m e  regions of phase space. Some 
other adjectives are also used in the literature: irregular, wild, erratic, semi- 
ergodic. . .  This behaviour implies that in a space of section the sequence 
of points corresponding to the trajectory jumps more or less randomly in 
the fraction of space left open by the invariant curves which correspond in 
contrast to a regular behaviour. 
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F i g .  1.  Surface  of  sec t ion  (x ,  X )  for particular initial conditions in the Hami l ton ian  
H~4 described in the text 

Ill fact ,  as often as not,  a chaot ic  behaviour  is character ised by the pres- 
ence of c a n * o r i  which, by any  means ,  are not to be confused with ergodicity. 

2. A Very Peculiar Case of  "Ergodic" Orbital 
Behaviour  

In a s tudy  of the t rans i t ion  between tile 3-part icle Toda  lat t ice (a typical  inte- 
grable  dynamica l  sys tem)  and the H6non-Heiles mode l  (1964) which displays 
a typical  semi-ergodic  behaviour ,  Udry  & Mar t ine t  (1990) have considered 
the par t icu la r  t t a ln i l ton ian  

H34 =- H3 + c H 4  (1) 

where H3 a n d / / 4  respect ively correspond to the 3 rd and 4 th order expansion 
t e r m  of the T o d a  l a t t i c e . / / 3  is the Hdnon-Heiles Hami l ton ian .  

T h e  par t icu la r  critical case c = 1/8 is interesting. I t  separates  the cases of 
bounded  mot ions  (e > 1/8) and  unbounded  mot ions  (E < 1/8) in the (E,  z) 
plane.  At E -- 1/3,  which is the escape energy for the potent ial ,  the l imit ing 
curve E ( x )  of the accessible region has an inflexion point  ( d E / d x  = 0 and 
d 2 E / d x  2 = 0). For such condit ions,  the surface of section (x, }) is apparen t ly  
densely covered by r a n d o m l y  d is t r ibuted  consequents (Fig. 1). As far  as I 
know, such ergodic behaviour  has  never been observed in orbi ta l  s tudies of 
galaxies.  
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Fig. 2. a) Surface of section, and 
b) rotation number curve rot(z) for 
a particular value of the Hamilto- 
nian in a triaxial model with axis 
ratios (1 : 0.25 : 0.125) 

3 .  I n t e r a c t i o n  o f  R e s o n a n c e s  i n  G a l a x i e s ,  H e t e r o c l i n i c  
O r b i t s  

Gerhard (1985) looked for the perturbations of integrable systems which are 
consistent with observations of early-type galaxies as well as approximately 
preserving the regular orbital structure of integrable potentials. Limiting his 
t reatment to small perturbations and to homoclinic orbits in order to be able 
to use the Melnikov integral technique, the author finds that only perturba- 
tions such as cos m~b (m = 0, 2, 4) modest ellipticity gradients or small figure 
rotation are working in this context. However, it seems to be clear that  in 
realistic systems, a chaotic behaviour can be amplified by resonance interac- 
tions and the presence of heteroclinic orbits. Such a situation was described 
in the inner regions of an axisymmetric model of our Galaxy for stars with 
small angular momentum (Martinet 1974). 

Evidence for chaos, triggered by resonance interactions in triaxial models 
of galaxies, has been given by Martinet & Udry (1990) in connection with the 
adopted morphology for these systems. We studied systematically orbits in 
slowly rotating modified Hubble profile models of various axis ratios (a : b : c): 
I) a nearby spherical one, II) a Schwarzschild model (1 : 0.625 : 0.5), III) 
a strongly triaxial one and IV) a bar. Surfaces of section as well as the 
rotation number "rot" attached to invariant curves have been obtained for 
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Fig. 3. Axis ratio dia- 
gram showing 
a) the predicted position 
of real systems inferred 
from observational d a t a  

(various symbols), 
b) N-body equilibrium 
models (1 - 7), 
c) modified Hubble pro- 
file analytical models 
(roman numbers) 

different values of the Hamiltonian. An example is given in Fig. 2 for model 
IV. Rational values of "rot" correspond to resonant periodic orbits. When the 
orbits are not regular, it is impossible to define "rot" (the invariant curves are 
dissolved) without ambiguity (bot tom figure) and discontinuities in "rot" (x) 
appear, indicating the range of resonances in interaction responsible of chaotic 
behaviour apparent in the surface of section (top figure). 

The main result of this investigation is that only models I and II show 
moderate chaotic regions (cantori) with not really detected resonance inter- 
actions, possibly confined to a very narrow range of rational numbers. On the 
contrary, models III and IV develop important  chaotic regions: for model IV 
for example, resonances in the range 1/5 < "rot" < 2/3 are implied in the 
set-up of chaos. Figure 3 shows that  in an existence diagram of axis ratios, 
our models I and II are located in the region occupied by real triaxial galaxies 
or bulges (various symbols) according to predictions inferred from observa- 
tions. On the contrary, the highly triaxial models III and IV are in a region 
devoided of such real systems. This could be a sketch of constraint on the 
possible shape of triaxial galaxies. Too highly triaxial objects might not exist 
because real equilibrium systems would not tolerate too much chaos! In this 
context, we may mention that either N-body  end-products of non-dissipative 
collapses (Udry 1993) or simulated elliptical systems resulting from mergers 
(Barnes 1989), have axis ratios consistent with the observational predictions 
as well as with our models I and II. 
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Fig.  4. Effect of a high-frequency sinusotdal potential perturbation on the orbital 
behaviour in the modified Hubble profile model. See text for the meaning of the 
parameters 

4. E f f e c t s  o f  A s y m m e t r i e s  or N o i s e  o n  t h e  O r b i t a l  

B e h a v i o u r  in T r i a x i a l  S y s t e m s  

The gravitational attraction of a co-rotating nearby body is able to deform 
the shape of orbits in the given systems defined above• In particular, instead 
of having a main stable orbit Xl which bifurcates into two stable branches 
(e.g. Martinet & de Zeeuw, 1988), the asymmetry triggered by an eccentric 
Plummer sphere leads to a continuous deviation of xl  from the plane, gradu- 
ally becoming a banana-shaped orbit (Udry 1991). We will come back below 
to the problems rising from the existence of this kind of centrophobic orbits. 
The addition of a high frequency sinusoidal function to the given potential to 
represent locally some noise modifies tile isodensity contours. Udry suggested 
the following form 

i 
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for the noisy 3-D potential. ~0 is the potential defined in the previous section. 
As shown in Fig. 4 displaying surface of section for several cases of the ampli- 
tude ¢ and the frequencies k~ of the noise in the 2-D case chaotic behaviour 
is favoured by such perturbations. As ~ and (or) ki increase, the invariant 
curves become thicker and are then progressively destroyed. 

5 .  B a r r e d  G a l a x i e s  

The topic of dynamics in barred galaxies has recently been extensively re- 
viewed by Sellwood & Wilkinson (1992). Here we summarise again some 
important  conclusions inferred from recent works about the relation between 
the shape of bars and the onset of chaos. The essential point is that if the axis 
ratio of the bar in the plane of the disc is larger than 3 to 4, and/or  the mass 
of the bar is larger than 1/4 of the total mass inside corotation, an extended 
chaotic region can occur in the inner parts of the galaxy and that the corre- 
sponding orbits cannot enhance the bar anymore. The stability of the main 
periodic orbit xl  along the bar is necessary to maintain the barred structure 
(for details of the 2-D case see e.g. Athanassoula et al. 1983). These results 
suggest that  models with the properties just mentioned should be excluded 
for a self-gravitating barred galaxy. As mentioned in the introduction, such 
predictions taking account collective effects need to be confirmed. 

The effect of a compact mass at the centre of a galaxy has been reported 
by Hasan ~ Norman (1990, and references therein). The percentage of phase 
space volume occupied by direct orbits along the bar decreases from 50% in 
absence of such a compact mass or if the axis ratio a/b of the bar is ,~ 2 to 
10 - 15%, for instance, if the compact mass is one tenth of the total mass or 
if a/b ,~ 4. At the present time, the only equilibrium model existing for a 2-D 
barred galaxy is the numerical one described by Pfenniger (1984b). In this 
work it is shown that  the percentage of semi-ergodic stars may be as large as 
30% but more probably below 10% if tile axis ratio is 4 and the mass of the 
bar is 1/5 of the total mass. Locally, however, around the Lagrangian points 
at the end of the bar, they can be 100% of semi-ergodic stars. 

For a 3-D barred galaxy the estimation of percentages of chaotic orbits is 
more complicated. From Pfenniger (1984a), it appears that semi-ergodicity 
is favoured by instability strips perpendicular to the galactic plane. The bar 
growth is limited by not too large axis ratios a/b and a/c. A too thin bar 
(a/c ~ 10) induces a lot of chaos. In a 3-D strongly barred galaxy, the res- 
onant family 4 : 4 : 1 has been proved to have a complex unstable part 
(Pfenniger 1985). The resulting orbital diffusion could be a possibility to 
populate the inner halo. 

Much work is necessary to estimate the permissible percentage of chaotic 
orbits in this case. 3-D equilibrium models do not exist at present time. 
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Fig. 5. Diffusion in various projection planes of stochastic orbits starting close to 
the z-axis orbits in a galactic potential with a central mass GMp. At the upper 
right of each frame, the x-coordinates versus time axe plotted 

6. Complex Instability in Triaxial Systems 

This is a new phenomenon which appears in dynamical  systems with 3 (or 
more) degrees of  freedom: the :]acobian matrix, associated with the linearised 
transformation describing the mot ion  close to a periodic orbit has all its 
eigenvalues complex and outside the unit circle. Real eigenvectors do not 
exist. It is yet not quite clear in which situations complex instability would 
produce a great amount  of chaotic motions.  Important zones of  complex 
instabilities have been found in rather academic potentials (Contopoulos K; 
Magnenat 1985). We mention here an interesting case which could play a role 
in the equilibrium and stability of  real galaxies. In modified Hubble profile 
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models as well as in other realistic models such as Schwarzschild's potential 
(Heissler et al. 1982) it has been established that,  in absence of rotation or of 
central compact mass, the (shortest) z-axis orbits are stable, then unstable, 
finally double-unstable for more and more energetic orbits. The  change of 
stability occurs at bifurcation points with stable and unstable anomalous 
(inclined) orbits. When we introduce rotation or a compact mass (Martinet 
& Pfenniger 1987), the z-axis may become partially complex unstable. We 
observed the case of a compact mass larger than one-thousanth of the total 
mass which makes the z-axis complex unstable from z = 0! The effect of such 
an instability is described in Fig. 5: the importance of stochastic diffusion of 
orbits starting near the z-axis is increasing with the central Plummer sphere 
mass. The diffusion time by this process could be shorter than the Hubble 
time if the central mass makes most of the z-axis unstable. 

7. Boxlets  

For a wide class of non-rotating triaxial potentials, most of the phase space 
is occupied by four well known major  families: box, inner and outer long axis 
tubes, short axis tubes. The x-axis periodic family is generic for the boxes 
provided that it is stable. Boxes appear essential for the construction of equi- 
librium models of triaxial systems. However, if there is a sharp variation of 
the density profile near the centre, the x-axis orbits can be unstable. Cen- 
trophilic boxes could be replaced by centrophobic boxlets such a~s bananas 
(Miralda & Schwarzschild 1989). 

Two points on boxlets need further investigations: firstly, the fact that 
this shape is not always compatible with the shape of the imposed density. 
This may cause a problem for the construction for equilibrium models. Sec- 
ondly, if the boxlets are unstable, they can participate to diffusion of chaotic 
behaviour. The question concerning what percentage of such orbits is per- 
missible for the construction of self-gravitating systems is still open. This 
question is still more complicated for rotating systems (Martinet ~z Udry 
1990). 

8. Concluding  Remarks  

- Existing morphologies of galaxies seem to be incompatible with too high 
percentages of semi-ergodic orbits. Slowly rotating triaxial dynamical 
models with a major  to minor axis a/c ratio larger than 2.5 or fast ro- 
tating barred systems with an axis ratio a/b larger than 3 or 4 display 
important  chaotic behaviours. Systems with such morphological features 
are in fact apparently not observed. 

- N-body  equilibrium figures obtained by gravitational collapse of initial 
rotating, anisotropic bodies have b/a from 0.5 to 1 and c/a > 0.45 in 
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agreement with predictions of observations. It  is the same for Barnes 
mergers (a : b : c = 1 : 0.95 : 0.65). 
N-body  bars in discs have axis ratios a/b < 4. 
Quanti ta t ive est imations of percentages of semi-ergodic orbits in 3-D sys- 
tems compat ible  with observed morphologies is an open question. 
The response to a given potential  is not sufficient for answering the ini- 
tial question. Furthermore galaxies evolve, bars may  grow, then dissolve. 
Ellipticals may  accrete. Gas and its various interactions with stars (star 
formation,  gaseous response etc.) contribute to modify the structure of 
the systems. Does the secular evolution lead such systems to a state close 
to an integrable potential  with modest  percentage of chaotic orbits, as 
suggested by Gerhard (1985)? 
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A b s t r a c t .  We prove the existence of a unique global minimum energy state 
for a self-gravitating system whose mass and a "quasi-entropy" assume a 
priori given values. 

1. I n t r o d u c t i o n  

Many authors interested either in the stability of the equilibria of self- 
gravitating systems (e.g. Ipser 1974; Ipser et al. 1979), or in their "violent 
relaxation" to an equilibrium (e.g. Tremaine et al. 1986; Wiechen et al. 1988; 
Aly 1989), have discussed the problem of the existence and determination of 
their minimum energy states under some constraints. In this paper, we re- 
consider this problem in the case the mass and a "quasi-entropy" (Tremaine 
et al. 1986) take a priori prescribed values. Our main emphasis is on the 
existence and properties of global energy minimizers. 

2. S t a t e m e n t  o f  t h e  P r o b l e m  

Consider a self-gravitating system whose state can be described by a distri- 
bution function f (x ,  v) = f(~). f is a nonnegative function defined over the 
phase-space R 6, with fd~ representing the amount  of mass contained in the 
volume element d~. The mass of the system is thus given by 

M[f] = f f(~) d~, (1) 

and its energy by (G denotes the gravitational constant) 

f(~)f(~') E[f]  V~ -- ~-~ d ( d ( ' .  (2) 

To f ,  we associate the "quasi-entropy" (Tremaine et al. 1986) 
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s [ f ]  := - f c(f) d~, (3) 

where C : R + --* R + is a given differentiable convex function which vanishes 
at the origin (C(0) = 0) and satisfies the technical condition 

C(f) > c f  p and C(f)=l__.ooO(f p) (4) 

for some constants c > 0 and p > 1. 
The problem to be discussed here is the following one: let Mo > 0 and 

So < 0 be given numbers, and 7-/be the set 

7i := {flY : R6 --+ R+; M[f] = Mo; S[f] = So; IE[f][ < oo}. (5) 

Then is there in 7/ a function f -  which globally minimizes the energy? 

3. L o w e r  B o u n d  o n  t h e  E n e r g y  

Clearly, for our problem to have a solution, the energy needs to be bounded 
from below in 7-/. That  this is the case depends on the value of p: 

• I f l < p < 9 / 7 ,  then 

E -  := inf E[f]  = - c ~ .  (6) 
7-/ 

It is always possible to find in 7/ an f with an energy as negative as we 
want, and the minimization problem has no solution. 

• If 9/7 < p, then the inequality (Aly 1989) 

- c ~  < E* := -kM(oTp-9)/3(p-1)[So/cl 2/3(p-1) <_ E-  := infE[f ]  (7) 
7-I 

holds, whith k := (2/5)5(42r)2/3G2. Thus the energy is bounded from 
below on 7/, and a minimizer f -  may possibly exist. 

It is worth noticing that the inequality E* < E -  in Eq. (7) reduces to 
an equality in the case where C(f) = clf] 9/7, the infimum E -  being actually 
reached by the Plummer's distribution function 

f - ( x , v )  = K  - + (a2+ ixl2)1/2 ) - + (a~+ ixl~),/~ / ,(8) 

where K and a are positive constants which can be computed from the values 
of Mo and So, and 0 is the usual step function. 
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4. Ex i s tence  and Proper t i e s  of  Minimizers  

When p _> 9/7, it can be proven that: 

• Whichever be the values of M0 > 0 and So < 0, there does exist in 7 / a  
unique minimum energy state f - .  f -  depends only on Ixl and M, and, 
for p > 9/7, it is at compact support in R 6. 

• f -  is a solution of the Euler-Lagrange system of equations associated 
with the extremization problem of E in 7/, i.e. 

iv12 
C ' [ f - ] : K  e0 2 

A4~- = 4 7 r G / f -  dv , 

f f -  d~ = Mo and 

4~-) where f -  > 0 in R 6 , 

- = S o ,  

(9) 

where K and e0 are unknown constants. In fact, this system turns out 
to have f -  as its only solution, and then f -  is also the unique energy 
eztremizer in 7/. 
Consider the "conjugate" problem which consists to find a global maxi- 
mum entropy state at given mass and energy (M[f]  = M0 and E[f] = 
E0 < 0). Then this problem has a unique solution, which is just the f -  
which has the right energy, i.e. E[f-] = Eo. 
f -  is "dynamically" linearly stable, i.e. it satisfies the so-called Anto- 
nov's criterion (e.g. Binney et al. 1984). It is worth noticing that  our 
arguments here to conclude at the linear stability do not use at all the 
strong Antonov's constraint on the perturbations: we just need to require 
that  the variations of the distribution function conserve mass and entropy 
to the first order! Nonlinear stability as defined by Wiechen et al. (1988) 
is also easily shown to hold for f - ,  but Lyapunov's stability (as defined 
e.g. in Kandrup 1990), although likely, is much more difficult to obtain 
and we have not yet a complete proof. 

5. Conc lus ion  

We have established that  a self-gravitating system having prescribed values 
of its mass and of one of its quasi-entropy satisfying condition (4), admits a 
unique minimum energy state i fp  > 9/7, but not such a state i fp  < 9/7. We 
have also derived some important  properties of the energy minimizers in the 
case p _> 9/7. 
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Effective Collision Term Induced by 
Coarse-Graining 

Toshio TSUCHIYA 

Department of Physics, Kyoto University, Kyoto 606, Japan 

1. I n t r o d u c t i o n  

Since stellar systems such as elliptical galaxies contain a large number of stars, 
observable quantities are always macroscopic. The macroscopic quantities are 
obtained by coarse-graining. The coarse-graining corresponds to observations 
and the procedure does not change the evolution of the systems. However, it 
is important to study apparent effects of coarse-graining, because we always 
employ coarse-graining in observations and/or N-body calculations. 

Lynden-Bell's idea (1967) about the relaxation of eollisionless systems 
is that the coarse-grained system can relax although the microscopic sys- 
tem cannot have increasing entropy. The coarse-graining must play a role 
for increasing entropy, but it seems doubtful that it is effective for relaxing 
the system, because the evolution of the coarse-grained system is only an 
apparent one. In fact, numerical sinmlations have shown that some equilib- 
riums do not have Lynden-Bell's distribution (van Albada 1982; Tanekusa 
1987). Other authors have shown that coarse-grained evolution does not al- 
ways increase the Boltzmann entropy (Trernaine, H@non ~c Lynden-Bell 1986; 
Kandrup 1987; Mathur 1988; Soker 1990). 

In this way, in order to get more basic understanding of the evolution, it 
is necessary to investigate the characteristics of the collision term induced by 
coarse-graining. 

2. Coarse-Graining 

Let us consider a system with N identical point particles which interact 
with each other only through the gravitational force. A full description 
of the state of the system is given by specifying the number of particles 
Nf(x,  v, t)dJx d3v having positions in the small volume dJx centered on x 
and velocities in the small range d3v centered on v, at any time t. The quan- 
tity f(x,  v, t) is called the distribution function (DF) of the system. A point 
particle has density proportional to the delta function, so that f is given by 
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N 1 
f ( w , t )  = ~ ~ 5 ( w  - w( ' ) ( t ) ) .  0) 

i= l  

Here we denote the phase space coordinates w = (x, v) for brevity, and 
w(i)(t) --- (x(i)(t), v(i)(t)) are the position and the velocity of the ith particle 
at time t. Time evolution of the system is given by the following equation 

d f  _ O f  . O f  . O f  O f  O f  0~i5(x) Of  _ 0 (2) 
dt - Ot +Xffxx+V~vv = 0"-t+V~x 0x 0v " 

Coarse-graining is defined formally by the expression 

(/>(,,,, t) _= fd~w~ D(wl)f(w + 
N 

1 
Wl,  t)  ----: ~ ~ D(w - w(0(t)) . (3) 

i= l  

The coarse-grained system Can be regarded as a system with N identical 
smoothed particles with intrinsic density D(w). Note that the particles are 
smoothed in velocity space as well as coordinate space. 

3. The  Collision Term Caused by Coarse-Gralning 

The collision term due to coarse-graining (we refer to it as/"ca) is defined as 
the Lagrange derivative of the coarse-grained DF (f): 

(d/d-t { o 0 0{~)(x" 0 ] ~ - t  V~x 0--~ r~ - (f) - + - ) ~  (f), (4) 

where (d/dr) means the Lagrange derivative along the coarse-grained flow of 
particles. 

After straightforward transformation, using Eqs. (2) and (3), FcG is 
rewritten in the form FcG= Fx + -r'dias + /'offding, where 

1 N r. = ~ Z : ( " -  v(')) OD(w-w(')) 
0x ' (5) 

i=1 

and 

Foffdias = G ix(j ) __x(i)l 3 
(7) 

- - G m  d6w2 } O D ( w - w  (j)) 
,v 
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The first t e r m / ~  means the rate of change of the intrinsic density of each 
smoothed particle, due to the shear flow inside their spread. This causes the 
distortion of the figure in phase space, this effect is regarded as phase-mizing. 

The coefficients of OD(w - w (i)) / 0v are the gravitational accelerations of 
the ith particle produced by the other particles. Thus Fdi,g does not represent 
the change of the intrinsic density of the ith smoothed particle due to the 
interaction among the other particles, but due to the potential force produced 
by the particle itself, so it has to be an artificial effect of the procedure. 

Fo~di,g means a very effect of the gravitational interaction. The first term 
of the coefficient in -Fofrdi,g is the gravitational force at x(J) produced by the 
other point particles. On the other hand, the second term is the force at x 
produced by the smoothed particles. Since the second term becomes negligi- 
ble compared to the first one for particles which lie inside the spreading of 
the considered particle, the first term gives the scattering by neighbouring 
particles. For distant particles, the difference between the two terms is ap- 
proximately the difference between the force at a point x inside the spread of 
the smoothed particle and its centre x (j). This moderate change corresponds 
to phase mixing. 

4 .  C o l l i s i o n  T e r m  D e r i v e d  b y  B B G K Y  Formal i sm 

Since BBGKY formalism is one of the most popular method to deal with 
many body systems (see, for example, Binney &= Trelnaine 1987), we next 
discuss the collision term derived by it. 

The collision term, /~BBGKY, is determined by two-point correlation func- 
tion. BBGKY formalism is based on Liouville theorem in N-dimensional 
phase space (_r' space). Then we give the N-body DF of the form 

1 =~.. E D(Wl_W(i,)(to))...D(WN_W(iN)(to)). (8) 
(il, . . . ,iN) 

where the summation is carried out through all permutations of ( i l , .  • . ,  iN) -- 
( 1 , . . . ,  N). This gives the same one-body DF (3) at t = to. Here we should 
note that  Eq. (8) does not mean coarse-graining, but an ensemble of different 
states of the system. Thus the collision term derived by BBGKY is differ- 
ent from the one induced by coarse-graining, by definition. The comparison 
between the two terms, however, is very important. 

The two-point correlation function obtained from Eq. (6) is 
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( g ) ( W 1 ,  W2, t o )  = - -  - -  

N 1 
N 2 ~ D(Wl-W<O(to))D(w2-w(O(to)) 

i = l  

1 
q- - ~  Z D(Wl-W<i)(t°))D(w2-w(J)(t°)) " 

(o) 

Then the collision term is given by 

f 0 -GNm 0 
/~BBGKY ~ 0 X l  Ixx-x~l 0~1 g(wx' w~, t) d~w~ 

l fo-Gm. <,,. O__O_D(wl_w(i)  
~-- - - N  = 0 x  I ix~_-Z--x21D(wz - w  ' )  d 6 w 2  0 v  I ~, ] (10)  

- -  D(w -w< )) d°w  D(w, -w+)  
+ ~ -  . . 0X1 X 1 - - X 2  

The first term is the same as Fdi~. As mentioned in the previous section, 
this term contains only self-interacting effect inside the smoothed particles, 
which cannot express the "collisions" among the particles. The second term 
shows the interaction among different smoothed particles like the one we 
saw in Eq. (7), but  the term derived here has the factor 1IN 2. Therefore this 
interaction term is negligible compared with that  induced by coarse-graining. 

5. D i s c u s s i o n  

We have shown that  three different effects come in the collision terms: 1) 
the self-interaction, 2) the phase-mixing, and 3) the scattering. The self- 
interaction term is only an artificial effect of the coarse-graining procedure 
and has no physical meaning. The scattering term is the usual idea about  
collision term, but the phase-mixing term arises from the long range force 
characteristics of gravity. 

With the same initial distribution as a coarse-grained system, the collision 
term obtained by using the two-body correlation function contains only the 
self-interaction term and a weaker interaction term than the coarse-graining 
o n e .  

In BBGKY formalism, the N-body DF (Eq. (8)) is conserved along the 
motion. On the other hand, in the coarse-graining procedure we can define 
the coarse-grained N-body DF which has initially the same form as Eq. (8); 
however, the evolution is different. As the coarse-grained DF (Eq. (3)) changes 
in time, the coarse-grained N-body DF also changes. That  is the reason why 
the collision term FBBGKY is negligible compared with the one induced by 
coarse-graining. 

The BBGKY formalism is concerned with the statistical average of an en- 
semble of different states of the system. If the system is ergodie, the average 
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corresponds to a long time average. For systems which evolve thermodynam- 
ically, such as globular clusters, we can deal with the time average, thus 
the BBGKY formalism is appropriate. For elliptical galaxies, however, the 
evolution that  we usually consider is dynamical, thus we cannot define any 
time average. With the result, in studying the dynamics of elliptical galaxies, 
that  the collision term should be estimated by the one directly derived by 
coarse-graining. 
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Theore t i ca l  and Numer ica l  Inves t igat ion  of  
the  Stabi l i ty  of  F la t t ened  Galaxies  

E. GRIV & W. P E T E R  

Department of Physics, Ben-Gurion University, 84105 Beersheva, Israel 

A b s t r a c t .  Quasi-linear theory is applied to the wave-star interaction of a 
differentially-rotating stellar disk of a galaxy. Under the influence of growing 
spiral waves the velocity dispersion of stars increases, and the resulting dis- 
tort ion in phase space leads to a decrease in the growth rate of the waves, and 
the Jeans instability ends. Due to interactions of stars with unstable waves 
the relaxation of the stellar disk of the Galaxy occurs in ,~ 10 9 years. The 
theory is confirmed by N-body  computer simulations. 

In modern density wave theory, the spiral structure of galaxies results from 
a non-axisymmetric gravitational Jeans instability (see Lin &5 Bertin 1984 
for review). Up to now, density wave theory has been developed only in the 
linear approximation. Weak nonlinear theory, i.e., nonlinear theory using a 
perturbat ion approach, can be used to explain a broad class of phenomena 
in the stellar disk of a galaxy. This approach was initially developed for the 
physics of an inhomogeneous plasma in a magnetic field (Krall & Trivelpiece 
1973). For instance, under the action of growing waves, the average proper- 
ties of a stellar disk may change; the "temperature" of the system which is 
measured by the kinetic energy of random motion may increase. This increase 
in turn leads to a stabilization of the gravitational instability as computer 
experiments have shown (Hohl 1972; Miller 1976). 

To describe the properties of stellar disks in the nonlinear regime it is 
useful to consider the quasi-linear wave-star interaction that  is not associated 
with the resonance condition ~ = kv, where w is the wave frequency, k is the 
wavenumber, and v is the velocity. 

Let us consider an inhomogeneous differentially-rotating stellar disk of 
a galaxy, taking a kinetic description as a basis. To describe the problem, 
it is useful to employ the well-developed mathematical  formalisms in plasma 
physics (e.g., quasi-linear theory) which have dealt with similar problems. For 
a discussion on the formal analogy between the oscillations of a differentially- 
rotating stellar disk and the oscillations of a magnetic plasma see the mono- 
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graph by Fridman L: Polyachenko (1984). By using the concepts of quasi- 
linear theory we can show that  through the influence of growing spiral waves 
the stars will tend to diffuse in velocity and coordinate space according to 
the relation: 

Ofo 02fo ~02fo 
= - (1)  

Here we have presented the distribution of stars in the form f( t)  = fo(t) + 
f l( t) ,  where fo(t) changes slowly in time and the small perturbation f l ( t )  
changes rapidly. See Krall & Trivelpiece (1973), Griv (1992), and Grivnev 
(1988) for a more detailed derivation of Eq. (1). This equation has the fol- 
lowing solutions for the non-resonant (or adiabatic) interaction of waves and 
stars: 

__V 2 

,,/Oo + 
/ 0 ( v )  ~ 

and 

n(r)  ,,~ 1 exp [ [2 --r2 - ( 3 )  

In these equations, n(r) is the surface mass density, or0 (no) is the initial ve- 
locity (surface density) dispersion, and E is the square of the wave amplitude. 

According to Eqs. (2-3), the main body of the distribution is effectively 
heated and the surface density is redistributed by the unstable waves. The 
velocity dispersion of the non-resonant part of the distribution function in- 
creases and fo(v) becomes less peaked, and the surface density becomes more 
peaked as the wave energy increases. The diffusion of the stars takes place 
because the stars gain additional oscillatory energy in the gravitational field 
of the unstable density waves. 

According to Eqs. (2-3), under the action of growing waves the velocity 
dispersion of stars will increase and the density of the disk falls off exponen- 
tially. This distortion in phase space caused by the spiral waves leads to a 
decrease in the growth rate of the waves and eventually to the cessation of 
the instability. Therefore, from the theoretical point of view, the spiral waves 
in computer-generated galaxies have to be short-lived, and should dissipate 
after a few rotations of the disk system. 

Our theoretical results have been verified by three-dimensional N-body 
simulations. We investigated the evolution of a model for an isolated thin 
disk of a galaxy by direct integration over a time span of equation of motion 
of identical stars. The cutoff radius re of the Newtonian potential was in- 
troduced in order to eliminate close encounters between the model particles. 
This "softening" parameter  reduces the interaction at short ranges and puts 
a lower limit on the "size" of the particles. 

At the start  of the N-body  integration a mass density variation given by 
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Fig .  1. The evolution of the thin disk of a galaxy with N = 3186 stars. Snapshots 
are taken at normalized times (left) t = 0, (middle) t = 400, and (right) t = 1000. 
The time is normalized so that  the time t = 1000 corresponds to a single revolution 
of the initial disk. The central dense core and under dense "corona" is due to the 
gravitational Jeans instability. Note the large velocity dispersions of the particles 
at  the end of the calculation 

r2 / 1/2 
n(r)--n(0) i-~ (4) 

was used, where n(0) is the central surface density and R is the radius of the 
disk. To ensure initial equilibrium of the disk the uniform angular velocity 

tg0 = 0 .808r  (Gn(O)/2R) '/2 (5) 

was a d o p t e d  (Hohl  1972). Then  the  pos i t ion  of  each par t ic le  was s l ight ly  
p e r t u r b e d  by  a p p l y i n g  a p s e u d o - r a n d o m  n u m b e r  genera tor .  T h e  Maxwel l ian-  
d i s t r i b u t e d  r a n d o m  veloci t ies  wi th  r ad ia l  and  a z i m u t h a l  d ispers ions  according  
to  the  wel l -known T o o m r e  c r i te r ion  

(TO : 0 . 3 4 1 ~  0 ( R  2 __ r2  ) 1 / 2  (6 )  

were a d d e d  to  the  in i t i a l  c i rcular  veloci t ies  (Hohl  1972). So in i t i a l ly  the  disk 
is Jeans  s t ab le  aga ins t  the  smal l - sca le  a x i s y m m e t r i c  p e r t u r b a t i o n s  bu t  un- 
s t ab le  aga ins t  the  s low-growing large-scale  sp i ra l  p e r t u r b a t i o n s  (see Pe te r  et 
al .  1993, for a more  de ta i l ed  exp lana t ion ) .  

Cor rec t ions  are  then  app l i ed  to  the  resu l t an t  veloci t ies  and  coord ina tes  of 
the  m o d e l  s t a r s  so as to  ensure the  equ i l i b r ium between the cent r i fugal  and  
g r a v i t a t i o n a l  forces a n d  to  preserve the  pos i t ion  of  the  disk center  of  g rav i ty  
a t  the  origin.  

The  sense of  disk  r o t a t i o n  was t aken  to  be counterc lockwise  and  un i t s  are  
such t h a t  G = 1, R = 1, rc = 0.0025 and  the  mass  of each s ta r  m = 1. A 
t i m e  t = 1000 is t aken  to  cor respond  to a single revo lu t ion  of the  in i t i a l  disk.  

In  Fig.  1 we show a series of  th ree  snapsho t s  f rom a th ree -d imens iona l  
s imu la t i on  ( N  = 3186) run  on a Cray  Y M P  supe rcompu te r .  I t  is seen t h a t  the  
effects of  the  g r a v i t a t i o n a l  Jeans  large-scale  i n s t ab i l i t y  a p p e a r  quickly  in the  



238 E. GRIV & W. PETER 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 

i q 

1000 

0,2 0,4 0,6 0.8 1 
r a d i u s  

2.5 

2 

1,5 

1 

0.5 

0 

/ I \ \  /t=0 v \ 
/ "~.~ 

/ ",. 
/ 

0,425 0.85 1.275 1.7 

r a d i u s  

Fig. 2. N-body simulation (N = 3186) results for (left) surface mass density as a 
function of radius, and (right) radial dispersion velocity vs. radius at times of t = 0 
and t = 1000. All units are arbitrary. The results are in agreement with the theory 
presented here 

simulation. At first, a tightly-wound spiral structure appears, but this gives 
way to a more open spiral structure with a larger pitch angle. In accordance 
with the given above theoretical conclusion the unstable spiral waves (the 
spiral arms) are short-lived and exist only during the time of 2 - 3 rotations 
of the system. As is seen in Fig. 2, the velocity dispersion increases and an 
exponential disk develops under the action of the gravitational instability, in 
accordance with the theory presented here. 
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T h e  E v o l u t i o n  o f  O r b i t s  in  t h e  S t e l l a r  D i s k  as 
a P u r e l y  D i s c o n t i n u o u s  R a n d o m  P r o c e s s  

I.V. PETROVSKAYA 

St Petersburg State University, Bibhotechnaya pl. 2, St Petersburg, 198904, Russia 

A b s t r a c t .  The scheme of a purely discontinuous random process was ap- 
plied to the investigation of irregular forces effects (Petrovskaya 1969a). Ear- 
lier, H6non (1960) showed that there are some features which could be de- 
scribed only by such a scheme. Later, the scheme was applied for studying 
the evolution of the velocity distribution of star groups of different masses in 
the uniform 3-D stellar field (Petrovskaya, 1969b; Kaliberda & Petrovskaya 
1970, 1971, 1972). 

In the purely discontinuous scheme the characteristics of motion change 
as jumps and that  gives us the possibility to evaluate not only the mass, but 
also the energy taken away by dissipated stars. In this study we consider 
the evolution of orbit integrals under the action of stellar-stellar encounters. 
So we have to take into account the smoothed potential of the system. We 
use the Kolmogorov-Feller's equation describing the time evolution of the 
distribution function of two orbit integrals, the energy integral, H,  and the 
angular momentum integral, Q. The kernel of the equation depends on the 
function F(h, q, tt, Q), which is equal to the density of the probability that  
as a result of the encounter the test star and the field star the value of 
energy integral of the test star changes from h to H and the the value of 
integral momentum changes from q to Q. We obtained here the expression 
for F(h, q, tt, Q) for the case when the system is fiat and the mass of the 
test star is zero. This probability function was multiplied by the coefficient 
of multiplicity for the flat medium found earlier by Petrovskaya, Chumak, & 
Chumak (1984). 

So the result probability is found to be finite everywhere. The latter gave 
us the opportunity to apply the method of integral transformation for solv- 
ing the Kolmogorov-Feller equation, as it was suggested earlier (Petrovskaya 
1983). 
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Abstract. Spherical stellar systems offer what is probably the best example 
of regular stellar systems and, accordingly, quite a few models are available 
for them with distribution functions depending on energy alone or on both 
energy and angular momentum. Real stellar systems, however, are subject 
to several effects that ,  although ignored when deriving those models, can 
cause irregular orbits to appear in them. Among those effects, the interac- 
tion of stellar systems is an extreme example of phenomena that,  except for 
a few general analytical results, can only be investigated through numeri- 
cal methods. While recognizedly a difficult subject, the study of interacting 
spherical stellar systems offers an interesting and almost virgin field to chaos 
researchers. We summarize here the investigations of other authors and our 
own, with a detailed discussion of the different physical processes relevant to 
this problem, and with particular emphasis on the most recent results. 

1. Ideal  Versus  Real  Spherical  Stellar S y s t e m s  

A star in a static spherical potential moves on a plane and the typical bound 
orbit forms a rosette (see, e.g., Landau • Lifshitz 1960, pp. 30-35). Since 
two integrals of motion (namely, energy, E, and angular momentum, L) are 
available, the motion is regular. Therefore, the distribution function (DF) of 
collisionless spherical stellar systems depends in general on the energy and 
the magnitude of the angular momentum, f (E ,  L); when the DF depends on 
energy alone, the velocity dispersion tensor for the system is isotropic (Binney 
& Tremaine 1987, pp. 221-223). Spherical stellar systems with isotropie veloc- 
ity distributions are stable under fairly general conditions, while the stability 
of systems with anisotropic velocity distribution is not so well understood 
(see, e.g., Binney &: Tremaine 1987, pp. 302 to 308); spherical systems with 
almost radial orbits, in particular, are subject to the so called radial orbi~ 
instability that  turns them into triaxial systems (see, e.g., Merritt 1987). 

While ideal collisionless spherical stellar systems may thus offer the best 
possible example of regular stellar systems, real systems are subject, instead, 
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to different degrees of chaotic behavior. Nfifiez et al. (1993) showed that,  
provided the orbital angular momentum is low enough, even very weak bar- 
like perturbations can give rise to irregular orbits in spherical potentials, 
and the oscillations found by Miller (1993) offer another path to chaotic 
behavior in spherical stellar systems. Irregular orbits can also easily appear 
in interacting stellar systems. They were found, for example, in the restricted 
three-body problem by  H~non (1966) and Jefferys (1966). An example closer 
to galactic dynamics can be found in the model of Rix & White (1989), 
although in that  case the galaxies were ellipsoidal (rather than spherical) 
and immersed in a common envelope. Besides, close encounters and mergers 
of sphericM galaxies often result in triaxial, rotating, systems where chaotic 
orbits must be present. 

Therefore, we may conclude that  real spherical stellar systems are subject 
to perturbations that  easily turn them into irregular systems, and that the 
interaction of spherical galaxies offers a "path to chaos" that has not been 
much explored thus far. Our purpose here is to present an interesting, almost 
virgin, field of research to colleagues working on chaos and ergodieity. A 
caveat should be made that  this is not an easy subject, and its difficulties 
may help to understand why so little has been done on the study of chaos 
in interacting stellar systems. Alternatively, the presence of irregular orbits 
in stellar systems is not a mere oddity, but a mat ter  of considerable interest 
to understand what happens to the system, as underlined in particular by 
the work of Pfenniger (1986). He showed that such effects as relaxation and 
dynamical friction are greatly enhanced by the presence of irregular orbits 
in the stellar system, and he also indicated interacting galaxies as a possible 
example of systems where these phenomena could be of relevance (see, also, 
Udry & Pfenniger 1988). 

The earlier work on interacting galaxies was reviewed by White (1982), 
and more recent reviews are those of Muzzio (1987) and Barnes & Hem- 
quist (1992). Consequently with our purpose, in the present review we will 
only consider the simplest possible theoreticM case, that is, collisionless, non 
rotating, spherical stellar systems (no gas, no disks, no observational compar- 
isons; see Barnes & Hernquist 1992 for those subjects). We will pay special 
at tention to the physical processes relevant to the study of interacting stel- 
lar systems and, although references to earlier work are unavoidable, we will 
concentrate on the most recently published results and to work in progress, 
plus a few papers that  seem to have escaped the attention of previous re- 
viewers. The case of satellites ( that  is, one of the systems much smaller than 
the other) is particularly interesting to show the influence of the different 
physical processes at work, and will be also discussed at some length. 
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2.  D y n a m i c a l  P r o c e s s e s  

Several dynamical processes play a significant role in the interaction of stellar 
systems and, since they may be of particular interest to researchers from 
fields other than stellar dynamics, they will be discussed at some length in 
this section. 

2.1 Relaxation 

An excellent example of the importance of relaxation effects in the interaction 
of stellar systems is provided by Binney & Tremaine (1987, p. 435): a stellar 
system, initially in equilibrium, is perturbed by a fast encounter with another 
system, suffers a sudden increase of its kinetic energy and, after a relaxation 
period, returns to an equilibrium state different from the original one; the 
change of kinetic energy during the relaxation phase, however, turns out to 
be iwice the original change caused by the encounter. 

Nevertheless, relaxation is not ezclusively present in the case of interact- 
ing stellar systems and it is thoroughly discussed by other authors in the 
present volume, so that we will not discuss it any further. Suffice here to note 
that some of the results we present below are based on the classical two-body 
estimates, so that relaxation effects there may have been grossly underes- 
timated as compared with the "collective" relaxation effects of Gurzadyan 
& Savvidy (1986), or with the response of irregular orbits (Pfenniger 1986; 
Udry & Pfenniger 1988). 

2.2 Dynamical Friction 

Chandrasekhar (1943) considered particle-particle interactions to derive the 
equation for the deceleration suffered by a particle of mass M that moves, 
with velocity V, through an infinite homogeneous medium of particles of mass 
m. If the density of the medium is p, its velocity distribution is Maxwellian 
with dispersion cr and G is the constant of gravitation, his result for the 
deceleration is: 

d__VV=dt -4rrG2(M+rn)pln)tv2 [ e r f (X) -  ~ X  exp(-X2)] (1) 

where X = V/(crx/~) and In A is the "Coulomb logarithm": 

bmaxV 2 
A - G(M + m) (2) 

that needs a maximum distance cutoff, bmax (the inclusion of a minimum 
distance cutoff in some derivations of Chandrasekhar's equation is just an ar- 
tifact, as shown by Muzzio & Vergne 1988). The proper election of the bmax 
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value has long been the object of debate, the most recent contribution to the 
subject being the one by Smith (1992). The truth is that only close encoun- 
ters are "instantaneous", as Chandrasekhar regarded them in his derivation; 
H~non (1958, 1960) recognized the problem and improved the formula with 
a perturbation treatment of distant encounters. His results are larger than 
those of Chandrasekhar by about 50%. 

Following the approach of Kandrup (1983), Bekenstein & Maoz (1992) 
considered the action of the stochastic force of the background on the test 
particle, rather than a particle-particle approach. Their formula agrees with 
the one of Chandrasekhar for massive test-particles, but extends it for other 
background- to test-particle mass ratios, ~ = m/M: 

dV 2Mpln)~ 
[ e r f (X) -  2 (1 + f l )Xexp( -X2) ]  (3) a 

They also obtained the velocity dispersion induced on the test-particle (which 
g~non had found too). Some curious properties of dynamical friction were 
recently investigated by Zamir (1992). 

Kalnajs (1972) rederived Chandrasekhar's formula considering the drag 
force exerted on the test-particle by its "wake". This approach leads to the 
(apparently) absurd result that the first- (or even second-) order effect of 
dynamical friction on a test-particle moving through a disk (Kalnajs 1972) 
or a sphere (Tremaine 1981) is zero. The key to solve that paradox lies in the 
fact that resonances are crucial to dynamical friction in those cases (Tremaine 
1981; Tremaine ~: Weinberg 1984). Detailed analyses of the orbital decay of 
a satellite within a spherical galaxy are due to Weinberg (1986, 1989). 

A very interesting question is whether dynamical friction can produce 
dynamical heating. The orbital energy of a globular cluster is about 1,000 
times its internal (i.e., binding) energy: if there were a process (even a very 
inefficient one) capable of introducing even a very small part of the braking 
energy inside the cluster, that would play havoc in its structure! This very 
important point was raised by Miller & Smith (1985) and the big question 
is, of course, whether such a process exists. 

Muzzio et al. (1988) used a linear analysis to show that the tidal force 
exerted by the wake on the satellite is negligibly small. Therefore, if the dif- 
ferential effect of the tidal force produces the dynamical heating, the latter 
cannot be significant; alternatively, if dynamical heating actually exists, it 
may have an origin different from the tidal force of the wake. Without con- 
sidering the possible origin of dynamical heating, Muzzio & Plastino (1992) 
used a purely experimental approach and found from numerical N-body sim- 
ulations that their satellite could absorb no more than 5% of the braking 
energy (and, probably, less than that). 

Nevertheless, since even a 0.1% efficiency can be relevant, more detailed 
investigations of the subject are warranted. The investigation of Muzzio et 
al. (1988) has to be improved using non-linear analysis, and numerical simu- 
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lations with larger numbers of bodies would be useful to derive tighter upper 
limits for possible dynamical heating effects. 

2.3 T ida l  Effects  

According to common wisdom, a satellite orbiting a larger body gets its 
material lying outside the Roche lobe pruned. King's (1962) idea of imposing 
a tidal radius, rt on a globular cluster, or satellite galaxy, was a very important  
and useful one. For a cluster of mass M, orbiting a galaxy of mass Mg with 
perigalactic distance Rp, the tidal radius is: 

-- (4) 

Nevertheless, tidal radii are much less well defined than the Roche lobe 
idea suggests. For example, stars on retrograde orbits around the satellite can 
remain stable at much larger distances than the tidal radius (Innanen 1979), 
because the Coriolis force, which is always directed along the satellite's radius, 
has inward sense (adding to the satellite's gravity) for retrograde motion, but 
outward sense (tending to disrupt the satellite) for prograde orbits. Thus, the 
satellite is much more easily stripped of stars on direct (prograde) orbits than 
on retrograde orbits. Besides, Grillmair (1992) has noted the presence of a 
halo of extra-tidal stars which can significantly alter the appearance of the 
profile and complicates the measurement of tidal radii. 

Except for the limiting effect of the tidal radius, the action of the external 
tidal field on the stars is usually not taken into account for models of globular 
clusters and similar stellar systems but, very recently, Heggie &: Ramamani  
(1993) generalized King's models using the 3aeobi's integral instead of the 
energy. 

Another important  effect is tidal torquing, discussed by McGlynn ~ Borne 
(1991), which contrary to common wisdom does not depend on the satellite 
being deformed. Let us consider a satellite orbiting around a galaxy, and 
a star moving around the satellite's center in the same plane of the orbit. 
Due to symmetry,  on first approximation, the effect of direct and retrograde 
torques cancels along a complete revolution around the cluster. On second 
approximation, however, as the satellite moves around the galaxy while the 
star moves around its center, we notice that  the motion of the star relative 
to the torque is much faster for a star on a retrograde orbit than for one on 
a prograde orbit, so that  the torquing effect is larger on the latter. Thus, 
the torque accelerates the prograde star, and decelerates the retrograde one, 
producing a net (second order) acceleration on the prograde direction. In a 
way, the effect may be likened to the wave-particle interaction that produces 
Landau damping (Saslaw 1985, pp. 105-107). 
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2.4  E f f e c t s  o f  E n c o u n t e r s  

Let us consider a stellar system of mass mc and mean square radius rc that 
suffers an encounter with a second one of mass ran. If the relative motion 
of the two systems is fast enough, the effect of the encounter on the struc- 
ture of the first one can be investigated using the impulse approximation of 
Spitzer (1958) which assumes that the stars that make up the system do not 
move during the encounter. Thus, the potential energy of the system remains 
unchanged while each one of its stars gets a sudden impulse that alters its 
velocity and, therefore, the total kinetic energy by an amount: 

A T =  1 ~2Gmn ~ 2 _ 2 3 me \ p2v ] re (5) 

where V is the relative velocity of the two systems and p the impact param- 
eter. Some stars may  acquire enough energy to escape from the system (a 
process dubbed tidal stripping), and the rest of the stars subsequently relax 
to a new equilibrium state where the potential energy is equal to twice the 
kinetic energy. 

For slow encounters the adiabatic approximation (also pioneered by Spit- 
zer) rather indicates that  the stellar orbits in one system react as a whole 
to the perturbat ion caused by the other system. Even encounters that  are 
fast compared with the orbital motion of the outermost stars may be slow 
compared with that  of the innermost stars, and Fig. 1 of Aguilar & White 
(1986) beautifully shows how the outskirts of a stellar system follow the 
scenario of the impulse approximation, while its nuclear region reacts almost 
as a solid body according to the adiabatic prescription. 

What  happens to the material tidally stripped from the galaxies that 
suffered an encounter? Most of it escapes from the system but, could at least 
some of the stars that  escape from one of the galaxies be captured by the 
other one? Tha t  is, could we have tidal accretion besides tidal stripping? 
The answer is yes. The effect was noted, e.g., by Dekel et al. (1980), but it 
was regarded by them as being of little relevance. Forte et al. (1982) and 
Muzzio et al. (1984) showed, instead, that  it can be a significant process in 
the evolution of systems of globular clusters in clusters of galaxies (hence, 
the name "cluster swapping"; see, Muzzio 1988), and Muzzio (1986) showed 
the same for other galactic material (hence, '~idal accretion"). Tile effect 
is maximized for slow encounters, because the velocity of the galaxy that 
accretes the tidally stripped material cannot be too different from the velocity 
of that  material. Up to 8% of the mass of a galaxy can be accreted (Vergne 
1992) and rates of 3% - 5% are common (Carpintero et al. 1989). The total 
effect is of course much larger for successive encounters (about six per Hubble 
time for a typical galaxy in a cluster, according to Muzzio 1987). 

For very slow encounters, the (negative) internal energy of the galaxies can 
absorb the (negative, zero, or slightly positive) orbital energy of the relative 
motion (Alladin 1965). The bulk of the material of the two galaxies thus 
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merges into a single remnant, while the rest of it escapes, helping the system 
to get rid of any remaining energy excess. Beautiful examples of mergers are 
shown, e.g., by Villumsen (1982) in his Figs. 2 through 5. 

3 .  M e t h o d s  

Both analytical and numerical methods are used to investigate the interaction 
of stellar systems. The former allow the derivation of general results, but are 
usually limited to the study of highly idealized models, while the latter can 
be used to investigate conditions closer to reality at the price of considering 
them on a case by case basis. 

3.1 Analytical Methods 

In addition to demanding strong simplifying assumptions, analytical methods 
are usually much more difficult to apply than computer simulations. Despite 
the necessary approximations, results can be surprisingly accurate, however. 
The impulse approximation, for example, was found by Aguilar &5 White 
(1985) to give very good results even for cases beyond its expected range 
of application. Excellent agreement between analytical and numerical results 
was also found by Cincotta et al. (1991) for the probability of escape from a 
stellar system due to a fast head-on encounter. 

Some brave attempts,  like those by Knobloch (1978), Weinberg (1986) 
and Sridhar &: Nityananda (1990) can be mentioned, but the field is clearly 
dominated by computer simulations. 

3.2 N u m e r i c a l  E x p e r i m e n t s  

Most straightforward (and CPU time consuming!) are the direct summation 
methods, where the total force on every particle is computed adding all the 
forces exerted on that  particle by each one of the other particles (see, e.g., 
Aarseth 1985). Some speed gains may be obtained when part of the particles 
can be taken as massless (see, e.g., Muzzio et al. 1984). 

Tree codes (e.g, Barnes &; Hut 1986) use tree-structured data  and approx- 
imate the force from distant particles with low-order multipole expansions, 
demanding shorter computation times than the direct summation methods 
for large numbers of bodies. 

The expansion of the potential on different basis functions is very popular 
for investigations of interacting systems (see, e.g., Villumsen 1982; Hernquist 
~5 Ostriker 1992). As long as the particle-particle interactions are not relevant 
to the problem in question, and as long as the galactic potentials can be 
approximated with a reasonably small number of terms in the expansion, it 
offers a fast and efficient method. 
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Methods that  distribute the particles in a fixed grid and use FFT tech- 
niques to compute the potential (see, e.g., Miller 1978), instead, are less fre- 
quently used to investigate collisions of galaxies, because much of the grid is 
then left empty. The moving grid of Miller (1986) may be useful to circumvent 
that  difficulty. 

When studying a small perturbation to a stellar system, only a fraction 
of the particles is used for the perturbation itself. In such cases, it is much 
more efficient to represent the system with analytic functions and to use 
"perturbation particles" of variable mass to simulate the perturbation, as 
done by Leeuwin et al. (1993) and Wachlin et al. (1993). 

Some researchers are now building their own special purpose computers 
for N-body simulations, like the "GRAvity PipEs" (GRAPEs) at the Univer- 
sity of Tokio (Ito et al. 1991; Fukushige et al. 1991; Makino 1991) that allow 
the use of large numbers of bodies in investigations of galaxy interactions 
(see, e.g., Okumura et al. 1991). 

4 .  R e s u l t s  

The results obtained by different authors, mainly from numerical simulations, 
are reviewed in the present section. 

4.1 E n c o u n t e r s  o f  Stel lar Sys tems  

Dekel et al. (1980) investigated the structure of systems that had suffered slow 
hyperbolic encounters. As a result, their systems developed, or extended, an 
inner flat mass profile while the outskirts were stripped. With some excep- 
tions, the innermost regions tended to concentrate while the outer regions 
expanded. Successive encounters stripped off stars puffed up into the halo by 
a previous encounter. 

Aguilar & White (1985, 1986) found good agreement between the results 
of the impulse approximation and those of their numerical experiments, and 
that  de Vaucouleurs density profiles were robust (even after 40% mass losses), 
while King profiles evolved toward de Vaucouleurs ones after the encounter. 
They also found that  tidal effects can only be recognized shortly after an 
encounter (Fig. 2 of their 1986 paper is particularly interesting). 

Vergne (1992) reported mass losses between 3% and 18%, with accretions 
between 1% and 8%, for equal mass encounters; mass losses can reach 36%, 
again with about half of that  amount being acereted, for M2/M1 = 1/4. She 
found some flattening toward the orbital plane for the low mass members. 
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4.2 Mergers 

Vergne (1992) found, for various mass ratios, the regions of the energy vs. 
impact parameter plane where mergers do and do not occur. In addition to 
allowing (as previous authors did) infinite time for the merger to take place, 
she also considered that the Hubble time posed a limit to possible mergers. 

The main conclusions derived from the earlier work (already reviewed by 
Muzzio 1987 and Barnes ~c Hernquist 1992) are: 

a) Mass losses are moderate, so that acceptable estimates of mean radii (say, 
half-mass radii) and velocity dispersions may be obtained assuming mass 
and energy constancy, and using the virial theorem; 

b) The homology assumption is wrong, however, since merger remnants tend 
to have higher central densities than their progenitors; 

c) The binding energy hierarchy is not destroyed (centers tend to mix with 
centers, and outskirts with outskirts), so that population gradients are 
reduced but do not disappear; 

d) Remnants tend to be prolate (as a result from head-on encounters), slowly 
rotating triaxial figures (for small, non-zero, impact parameters), or faster 
rotating oblate figures (for larger impact parameters), and they are fre- 
quently surrounded by an extended envelope where the density falls as 
r -4. 

More recently, Okumura et al. (1991) used their GRAPE-1 system to sim- 
ulate mergers of systems made up of 16,384 bodies, thus avoiding numerically 
enhanced relaxation. Their results illustrate beautifully several of the previ- 
ous conclusions summarized above. Besides, they were able to obtain good 
rotation curves for their remnants and found that their ratios of maximum 
rotation velocity to centrM velocity dispersion were in good agreement with 
the observational results for elliptical galaxies. They also found good agree- 
ment with the Faber-Jackson relation for elliptical galaxies (Faber ~z Jackson 
1976), so that their work gives support to the idea that elliptical galaxies 
originate from mergers (see, e.g., Toomre 1977). 

The need to use large numbers of bodies in merger simulations was also 
emphasized recently by Gelato et M. (1992). 

4.3 Satel l i tes  

The orbital decay, due to dynamical friction, of a satellite on a circular 
(turned into spiral) orbit within a spherical galaxy has been the subject of 
many investigations. Lin & Tremaine (1983), Bontekoe & van Albada (1987), 
and Zaritsky & White (1988) (which corrected White 1983) all found good 
agreement of their numerical experiments with Chandrasekhar's formula and 
concluded that dynamical friction may be regarded as a local processes. 

Numerical experiments by Hernquist & Weinberg (1989) resulted in ex- 
cellent agreement with the decay rates of the other authors, but with a 50% 
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difference with the predictions of the perturbative analysis of Weinberg (1989) 
that  they at t r ibuted to second order effects; they did find good agreement 
between the numerical and analytical results on the wakes of the satellites, 
however. 

A caveat is needed here: since the deceleration caused by dynamical fric- 
tion is proportional to the satellite's mass, almost all the studies cited above 
used satellites one-tenth as massive as the galaxy in order to have a measur- 
able effect, while the real situation (say, globular clusters or dwarf galaxies) 
calls rather for mass ratios in the 10 -6 - 10 -3 range. For such low mass ra- 
tios, dynamical friction is only relevant in the innermost regions of the galaxy, 
where the density is high enough, as Fig. 7 of Pesce et al. (1992) dramatically 
shows. An orbital decay characterized by an essentially constant pericentric 
distance and a slowly decreasing apocentric distance, as shown in Fig. 1 of 
Bontekoe ~c van Albada (1987) is, thus, much more akin to the real situation 
than the more common view of an almost circular inward spiraling (which can 
only happen after the very long interval needed for the apocenter distance 
to become similar to the pericentric one). The fact that  real satellites have 
much lower masses than the values used for the theoretical investigations also 
casts doubts on the applicability of the global response studies: with satellite- 
to-galaxy mass ratios of one-tenth those studies make sense, but with mass 
ratios of one-millionth it is pointless to look for global responses or resonances 
that  would be distorted or erased by other disturbances (density fluctuations 
within the galaxy, other satellites, and so on). A purely local estimate, like 
the one of Chandrasekhar, may offer a more sensible approach in those cases. 

It is worth recalling, however, that Chandrasekhar's approximation con- 
siders the motion in an infinite homogeneous medium. Within a galaxy, in- 
stead, the gravitational field of the galaxy itself has to be taken into account 
too and, for example, tidal accretion by the satellite becomes possible. A 
new study, closer to the real situation, is now under way at La Plata (Cora 
et al. 1993). 

While the dynamical friction investigations usually take the satellite as a 
point mass, it is obviously very interesting to know what happens to a real 
satellite made up of stars and suffering relaxation, tides, etc. Oh ~c Lin (1992) 
used a new code developed by Oh et al. (1992) to investigate the evolution 
due to relaxation and tidal effects (they also included disk shocking, which 
lies outside the scope of the present review). Their simulations are not self- 
consistent, however, as the cluster's field is always spherical and constant in 
time. 

The self-consistent simulations of Miller (1986) show dramatically how 
the satellite evolves along the orbit (see his Fig. 1). Miller found that, after 
a flyby close to the center of a larger system, the satellite suffers either little 
mass loss (< 1%) or is totally disrupted. McGlynn (1990), instead, found 
only negligible effects on the core of a system stripped of as much as 30% of 
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its outer parts. The cause of the discrepancy is, probably, that McGlynn's 
King models are much more concentrated than Miller's n = 3 polytropes. 

Zinnecker et al. (1988) and Freeman (1990) suggested that nucleated 
dwarf elliptical galaxies, captured by giant elliptical galaxies, might lose their 
outer envelopes and their nuclei might thus become globular clusters. Their 
suggestion was criticized by van den Bergh (1990) on observational grounds 
but, considering the results of Miller (1986) and McGlynn (1990), Bassino et 
al. (1992, 1993) decided to investigate the issue with numerical experiments. 
Adopting parameters similar to those of the galaxies of the Virgo cluster, 
they found that: a) Dynamical friction is very small, so that captures must 
be almost exclusively due to tidal effects; b) King-profile galaxies are com- 
pletely destroyed after a few flybys; c) While the nucleated galaxies get quite 
a beating too, their nuclei manage to survive (albeit strongly depleted) at 
least several flybys, but it is doubtful whether they can endure much longer. 

Figure 1 (from Bassino et al. 1992) shows the evolution of a dwarf galaxy 
orbiting around a giant one 1.5.105 times more massive. The dwarf galaxy 
is made up of 5,000 bodies, while the giant one is represented by a fixed 
potential, corresponding to a singular isothermal sphere, whose center lies 
at the center of coordinates; the Aguilar ~ White (1985) code, kindly made 
available to us by L.A. Aguilar and slightly modified to include the effect of 
dynamical friction, was used for the integrations. Apocentric and pericentric 
distances are 250 and 25 kpc, respectively, and the orbital period is 17 time 
units; the time is given on each plot. The first row shows the large scale 
evolution, and the dispersion of the satellite along its orbit can be clearly 
seen. The second row shows, on smaller scale, the evolution of a nucleated 
galaxy, while the third row depicts the same for a King profile galaxy. A 
sizable part  of the nucleated dwarf still survives after six revolutions, but the 
King profile is on its way toward disappearing. 
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A b s t r a c t .  High-softening two-dimensional models, frequently employed in 
N-body experiments, do not provide faithful simulations of real galactic discs. 
A prescription (6) is given for choosing meaningful values of the softening 
length. In addition, a local stability criterion (8) is given for choosing mean- 
ingful input values of the Toomre parameter for a given softening length. 
Such a criterion should also provide a key to a correct interpretation of com- 
putational results in terms of real phenomena. 

1. I n t r o d u c t i o n  

N-body simulations employing particle-mesh codes have nowadays become 
a very powerful tool for investigating the dynamics of disc galaxies. In par- 
ticular, two-dimensional N-body models in which the stars and the cold in- 
terstellar gas are treated as two different components have successfully been 
applied in studies of spiral structure (e.g., Salo 1991; Thomasson 1991). A 
correct interpretation of computational results in terms of real phenomena 
poses serious problems, also because there are quantities introduced for nu- 
merical reasons which do not have clear physical counterparts. One of such 
artificial quantities is the softening length of the modified (non-Newtonian) 
gravitational interaction between the computer particles, and its value can 
critically affect the results of N-body experiments. It is thus of fundamen- 
tal importance to have a prescription for choosing meaningful values of the 
softening length. From the stability point of view, it has been suggested 
that softening introduces a quite reasonable thickness correction for a two- 
dimensional model (e.g., Sellwood 1986, 1987; see also Byrd et al. 1986). 
In this paper the analogy between numerical softening and finite-thickness 
effects is investigated in detail on the basis of a local linear stability analy- 
sis, and in particular the question "How faithfully does the softening mimic 
the thickness of galactic discs?" is addressed. It is found that high-softening 
two-dimensional models, frequently employed in N-body experiments, do not 
provide faithful simulations of real gMactic discs. A prescription (6) is given 
for choosing meaningful values of the softening length. 
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Strictly connected with that  problem is the choice of meaningful input 
values of the local stability parameter for a given softening length. In con- 
trast to the softening length, the Toomre parameter is directly related to 
observable quantities, has a clear physical meaning, and its output values in 
N-body experiments can be compared to those predicted by theories of spiral 
structure and secular heating. In this paper a local stability criterion (8) is 
found in virtue of the descriptive similarity between numerical softening and 
finite-thickness effects. Such a criterion should indeed provide a key to this 
problem. 

A more thorough discussion is given by Romeo (1993). In this short paper 
we just focus on a few points. 

2. Local Stability 

It is convenient to adopt the following scaling and parametrization: 

kH - -  ~2 
_= jkl,  where k H ~ 27rGcr H ; (1) 

(7 C C~c CH~ 
C~ ~ 3 ~ - - ;  QH -= , ~ - =  k H s .  (2 )  

In these formulae, k is the local radial wavenumber of the perturbation, ~¢ 
is the epicyclic frequency, ai and ci (i = H, C) are the unperturbed surface 
densities and the equivalent planar acoustic speeds of the stars (H) and the 
cold interstellar gas (C), respectively, s is the softening length of the modified 
gravitational interaction. The case ~/= 0 represents the limit of an unsoftened 
gravitational interaction. There exists a critical value of the softening length 
beyond which the model is locally stable even for vanishing Q~: 

1 2zcGa 
S T A B I L I T Y  OF C O L D  M O D E L S  : 8 )> 8crit - -  e t¢ 2 , (3 )  

cr being the total unperturbed surface density. This two-component extension 
of Miller (1972, 1974) criterion for cold models (ci = 0) is indeed the limiting 
case of a more general local stability criterion for cool models (ci > 0), which 
can be viewed as the softened two-component extension of Toomre (1964) 
criterion: 

* S T A B I L I T Y  OF C O O L  M O D E L S  : Q2 n > 0 2, 8 (4) 

Q2 = Q2(a ' 3, ~/) being the global maximum of the marginal stability curve 
derived by Romeo (1993). In particular, in low-softening standard star- 
dominated regimes 

02 ~ l + 4 ( a -  r]) [a  <(<( 1; 3, r? = O(a) ] .  (5) 
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Fig. 1. Two-fluid marginal stability curves in the (A, Q2) plane for some values of 
the local parameters T/, a and fixed fl = 0.01. The case ~/= 0 represents the limit 
of an unsoftened gravitational interaction 

3 .  R e s u l t s  

In presenting the results of the local stability analysis performed in this pa- 
per, we have considered the standard star-dominated and the peculiar gas- 
dominated regimes already investigated in the context of thick two-compo- 
nent galactic discs (Romeo 1990, 1992). The marginal stability curves shown 
in Fig. 1 should qualitatively be compared to those shown in Fig. 4 of Romeo 
(1992). It is apparent that ,  because of the highly stabilizing role of numeri- 
cal softening, the local linear stability properties of two-dimensional N-body 
models can indeed be considerably different from those of thick galactic discs, 
as derived analytically. In particular, n o t e  the suppression of the gaseous 
peak in peculiar gas-dominated regimes even for exceedingly low softening. 
The softening can faithfully mimic the thickness of galactic discs or, more 
precisely, the effective thickness-scale of the stellar component [defined in 
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Eq. (6) of Romeo (1992)] only in standard star-dominated regimes, provided 
the softening length is chosen to be very short compared to the characteristic 
wavelength corresponding to the stellar peak: 

1 27rG~r~ 
s <~ 2 ~2 --~ 1 kpc, , (6) 

as a typical value for realistic N-body models of disc galaxies. Softening 
lengths comparable to the critical value given by the Miller criterion do not 

fulfil this prescription. 

4 .  C o n c l u d i n g  R e m a r k s  

The suggestion that  softening introduces a quite reasonable thickness correc- 
tion for a two-dimensional model is quantitatively confirmed in low-softening 
standard star-dominated regimes. A constant softening length would then 
ideally correspond to a constant scale-height of the stellar component. On 
the other hand, a realistic simulation of the vertical structure of disc galaxies 
would in any case require a proper three-dimensional model. 

Although the local stability properties of high-softening two-dimensional 
N-body models are considerably different from those of thick galactic discs, 
the propagation properties of the spiral waves are still expected to be phys- 
ically plausible in standard star-dominated regimes, provided the softening 
length is chosen to be shorter than the critical value given by the Miller cri- 
terion [cf. the more restrictive prescription (,)].  In choosing the input values 
of the local stability parameter as well as in comparing its output values to 
those predicted by theories of spiral structure and secular heating, it should 
then be borne in mind that the stability threshold is not. unity (Toomre 1964 
criterion for unsoftened one-component models), but the value given by the 
local stability criterion (8) discussed in Sect. 2. 
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1. I n t r o d u c t i o n  

The value of the pat tern speed (~2p) of density waves in spiral galaxies is 
usually estimated by associating major resonances (e.g., 4/1, corotation or 
- 2 / 1 )  with spiral features such as the ends of the arms (Contopoulos & 
Grosb¢l 1988; Patsis et al. 1991, Elmegreen et al. 1992). Choosing in this 
way a value for the pat tern speed of a particular normal spiral galaxy, we 
may follow the response of stellar or gaseous models for this galaxy to an 
imposed spiral potential. Thus we can estimate whether our model responds 
better to a rapidly or to a slowly rotating pattern. Also, by comparing stellar 
and gaseous models with the same /2p for the same galaxy, we can trace 
differences in the dynamical behaviour of the two components. In this paper 
we present some gaseous models for normal grand-design spiral galaxies, and 
we outline the differences between them and the corresponding stellar cases. 

2. T h e  M e t h o d  

For our calculations we use a version of the SPtI method with a spatially and 
temporally varying resolution length h. For details of the code the reader may 
refer to Hiotelis & Voglis (1991), and references therein. The imposed poten- 
tial consists of two parts, an axisymmetric part (V0) and a spiral perturbation 
(V1). V0 is obtained from the circular rotational velocity 

v = Vmax ~/) br exp(--br) + [1 --exp(--dr)], (1) 

where f ,  b, and d are constants. The rotation curve (1) starts at v -- 0 for 
r -- 0 and tends to Vmax as r tends to infinity. The parameters Vmax, f ,  b, 
and d are obtained by fitting Eq. (1) to existing observational data for the 
rotation curve and making the appropriate corrections for projection effects. 
The spiral perturbation is of the form: 
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where e, is the inverse scale length of the spiral, and A its amplitude. 

(2) 

3. R e s u l t s  a n d  C o n c l u s i o n s  

The main  conclusion of this s tudy is that  our results depend directly on the 
type of galaxy we are trying to model. In particular we can say: 

• In open, late-type, grand-design, normal spiral galaxies we have the best 
response in models with strong, slowly rotating patterns, which place the 
4/1 resonance at the end of the observed spirals. 

• In tightly wound, early-type, grand-design, normal spiral galaxies we have 
best response in models with weak, rapidly rotating patterns. 

The above conclusions agree with the results of stellar models for the same 
types of galaxies (Contopoulos and Grosb¢l 1988, Patsis et al. 1991). They 
also agree with the analysis of the azimuthal  profiles of the relative intensities 
(Grosb¢l 1993), which indicate the non-linearity of the perturbat ion in open 
normal  spirals. 

Fig. 1 shows the response of three models for the late type Sc galaxy 
NGC 2997. Fig. l a  is a deprojected image of the galaxy in red light. In (b) 
we give a stellar model, constructed by integrating a large number of non- 
periodic orbits (Patsis et al. 1991). The end of the spiral is assumed to be 
at  the 4//1 resonance, as is also assumed for (c), which is a gaseous model. 
In both cases the position of the 4//1 resonance is indicated with arrows. In 
(d) we give the response of the gas to a rapidly rotating spiral potential. In 
this case the end of the spirals is assumed at  the -2/ /1 resonance. The -2//1 



SPH Simulations of the Gas Flow in Normal Spiral Galaxies 263 

a 

COROTATION 

b 

COROTATION 

Fig. 2. The density maxima of the 20 component as a function of radius for a 
corotation model (a) and for a -2 /1  model (b). 

region in this model is characterized by the presence of a ring at the outer 
edge of the disk. This is a typical feature found almost  in all the - 2 / 1  gaseous 
models we examined. The perturbing force is 16% of the axisymmetric  one 
at the end of the spirals for the stellar case and about  13% for the gaseous 
models. Detailed comparisons between models with larger and smaller values 
of ~2p can be found in Patsis et al. (1991, 1993). Here we want to emphasize 
that  the presence of pressure and viscosity enhances secondary features in 
the region of the 4/1 resonance like the bifurcations of the arms observed in 
(c). We identify them with main interarm features of the galaxies, which are 
more pronounced at  blue images. 

In Fig. 2 we give the density m a x i m a  of the 20 component  of two rapidly 
rotat ing disks for the t ight-wound spiral NGC 1357 as a function of radius. 
This is an early type Sa galaxy with pitch angle i = 8 °. In (a) the end of 
the observed spirals corresponds to corotation, while in (b) it is at the - 2 / 1  
resonance. In both  cases, a weak per turbat ion of the order of 1% is able to 
give a nice response over the whole region of the disk, without problems at the 
4/1 region. The overplotted spirals represent the imposed potential  minima• 
The corotation model can be regarded as better, since response max ima  of 
the 20 component  do not tend to form a spiral tighter than the imposed 
one in the outer parts.  Also, in general, we observe that  the points at the 
corotation model fit the potential  min ima better  all over the disk. 
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Traditionally, the potential used for the study of the orbital structure of a 
bar is derived from a more or less realistic analytical mass distribution. Our 
knowledge of families of periodic orbits, bifurcations and ergodicity in bars 
and lenses is thus based on potentials generally computed at the best from 
Ferret's ellipsoids. However, the light distribution of real galaxies does not 
look like the mass distribution of the models: it has been shown (Athanassoula 
et al. 1990) that  light distributions of strong bars are rectangular like and not 
elliptical. In order to get a more realistic expression for the potential, we have 
computed it directly from CCD frames following a method briefly described 
in Wozniak (1991). Assuming an infinite thinness for a galaxy and a constant 
mass-to-light ratio, we can solve numerically the 2D Poisson equation for a 
given galaxy using the projected light distribution as a model for the surface 
density of mass. We can neglect any massive dark halo since it is expected 
to have a very little influence on the dynamics inside the bulge and the bar. 
We have applied this method to a sample of 17 early-type barred galmxies 
(Athanassoula ~z Wozniak, 1993). Here, we only deal with one of them, NGC 
936, for which we have computed orbits in the calculated potential. 

Our calculations show that  the ellipse-like family (Xl) is the backbone of 
the bar and it has been shown in Athanassoula et al. (1990) that the outline 
of bars is rectangle-like. Thus we would like to discuss orbits that could in 
principle support  this shape. We will only describe some types of orbits that 
are good candidates. Our arguments are only based on the shape of the orbits 
and the t ime spent along their different section. For more details, see Wozniak 
& Athanassoula (1993). 

T r a p p e d  o r b i t s .  A traditional way to make the bar rectangular is to con- 
sider the t rapped orbits around the xl family. The major axis of these orbits 
oscillates around the bar major  axis and thus an area with a rectangular 
aspect could be filled although the Xl orbits themselves are elliptical or even 
pointed at the major  axis (Figs. ld- f ) .  Indeed, if we superpose some of these 
t rapped orbits taken at different values of Ej ,  we may reproduce the rect- 
angular shape of the bar but only in the inner region where the isodensi- 
ties contours are thin and their semi-major axis shorter than the bar length 
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(cf. Figs. ld - f ) .  Thus there are no t rapped orbits that  can reproduce the 
observed width of the bar where its rectangularity is maximum.  

S e m i - c h a o t i c  o r b i t s .  We can also consider semi-trapped (or semi-chaotic) 
orbits, that  are orbits confined in a cantorus surrounding the Xl. They could 
part icipate in the building of a rectangular bar, as for the self-consistent 
models of Pfenniger (1984) or the N-body  bar of Sparke & Sellwood (1987). 
These orbits appear  at E j  ~ -0 .0052 (cf. Fig. lg).  They semi-chaotic orbits 
have the same extent along the major-axis  as the t rapped orbits at the same 
E j  but  they fill a wider area. Thus, at  E j  ~ -0 .0049 semi-chaotic orbits have 
the right size to fill the area defined by the outer isophote (cf. Fig. lh).  Fur- 
thermore these orbits spend much of their t ime in the "corners" of the bar, as 
we have checked by computing the corresponding orbital density. The domain 
in E j  for which semi-chaotic orbits can part icipate in the rectangularity of 
the bar is small (cf. Fig. 2). 
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Fig. 2. Characteristic diagram: blow-up of the energy region where trapped orbits 
and semi-ergodie orbits are responsible for the rectangle-like shape of the bar. Ej 
is the Jacobi constant, X is the intersection of a periodic orbit with the semi-minor 
axis of the bar. Stable orbits are plotted with a + and unstable ones with a dot. The 
thin solid line is the Zero Velocity Curve. The \ shaded regions give the domain of 
orbits trapped around a family of periodic orbits; the / one is filled by semi-ergodie 
orbits. The remaining areas are essentially covered by ergodic orbits 

D i s c u s s i o n .  The lack of stable families of periodic orbits over par t  of the 
extent of the bar need not be destructive for the bar. Indeed, there are always 
semi-chaotic orbits which could have a non negligible weight in the distri- 
bution function of the dynamical  system. Moreover, it has been shown by 
Pfenniger (1984) that  a substantial  amount  of chaotic or semi-chaotic orbits 
could be found in a self-consistent model even if models free of semi-chaotic 
orbits can be built. Petrou (1984) reached similar results without building 
a self-consistent model. In the models of Pfenniger, semi-chaotic orbits are 
essentially found near the unstable Lagrangian points Ll,2 around which, in 
our model, the bar isophotes are the most rectangular. 

Obviously, this is no substi tute for the proper calculation of a self- 
consistent model using, for instance, the Schwarzschild (1979) method. Such 
a method could give us the distribution function and thus full information on 
what kind of orbits part icipate in the building of the bar. This will be done 
in a future paper.  
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Josu~ A. NUI~EZ, Pablo M. CINCOTTA,  & Juan C. MUZZIO 
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PROFOEG-  CONICET 

A b s t r a c t .  The mot ion of a particle in a central field with a rotat ing bar- 
like per turbat ion has been investigated by many  authors, but, only a few 
papers deal with fixed bar perturbat ions which arise, for example, as a result 
of the radial orbit instability (e .g .D.  Merritt & L.A. Aguilar 1985, MNRAS 
217, 787). Our main interest is to investigate the relevance of stochastic orbits 
in such kind of fields. Thus, using information theory, we develop a simple 
method to evaluate the global degree of stochasticity of a set of orbits in a 
given Hamiltonian.  Briefly, we obtain the Poinear~ Surface of Section (PSS) 
for each orbit, then we choose a part i t ion of it and, finally, we compute the 

N entropy of the PSS defined as S = - ~ i = 1  Pi In P;, where Pi is the probabili ty 
of finding an intersection of the orbit with the PSS within the /th partition. 
We expect S to have two regimes: a low-value one for regular orbits and a 
high-value one for stochastic orbits. To test our method,  we used the well- 
known H~non-Heiles potential.  We obtained the PSS with 2500 points for 70 
orbits. Our results showed the power of the method to describe the features 
of the potential,  the lower values of S corresponding to stability islands and 
the higher ones to clearly stochastic regions. 

We then applies this algori thm to the isochrone potential, ¢ i ( r ) ,  plus a 
bar-like per turbat ion of the form ¢1(r, ~) = - a ¢ ( r ) s i n  2~, where ~ is the 
per turbat ion paramenter  and a is a constant. We consider 90 orbits, all of 
them with low angular momenta .  Our results show that  about  50% of the 
orbits are stochastic, al though the effective perturbat ion ¢1 /¢ I  is not larger 
than 4%. This result is very interesting since, as the probabili ty of finding a 
system with perfect spherical (or axial) symmet ry  is very low, there is a good 
chance of finding stochastic orbits for the low-angular-momentum stars that  
move within such a field. 
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A Hierarchical  M o d e l  of  Pa tchy-S truc tured  
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A b s t r a c t .  Results of an investigation concerned with the development of 
hierarchical models of S- and SB-galaxies are presented. 

In (Nezhinskij &: Ollongren 1992) new dynamical models of S- and SB-galaxies 
were proposed. In these models stellar complexes (as Efremov 1984 called gi- 
ant condensations of mat ter  in the plane of real spiral galaxies) are considered 
to be point bodies situated in the plane of symmetry forming stable cen- 
tral configurations (i.e., self-gravitational systems of bodies rotating around 
the center of mass of the model with constant angular velocity). In S- and 
SB-galaxies these configurations can be seen as patchy rings and ring- like 
patterns. 

The present paper is based on an extension of the mentioned models 
achieved by constructing hierarchical representations of S- and SB-galaxies. 
The foundations for this choice are well-known facts: the hierarchical struc- 
ture of quasi-stationary galaxies and the occurrence of the mentioned ring-like 
spiral patterns in these galaxies. The complexes forming these patterns con- 
sist of gigantic clouds of gas and dust, open stellar clusters and associations. 
Therefore globules of matter  were chosen instead of point bodies to represent 
these objects. The results are summarized below. 

Sufficient conditions for the existence and stability of hierarchical models 
have been formulated (to be published separately). 

The general question on the self-gravitation of stellar complexes embedded 
in a galactic gravitational field of force is open. We considered models of S- 
and SB-galaxies which contain non-self-gravitational complexes. 

To complete the discussion on the question how well the proposed hier- 
archical model represents an actual galactic system, the half-value time for 
the destruction of stellar complexes has been estimated. Using a realistic as- 
sumption on the density of matter ,  it turns out to be larger than 101° years. 

Finally several representative examples of stable models of the hierarchical 
type are shown in Fig. 1. 
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Fig.  1. The parameters for the models are chosen in such a way that the total 
mass of the nucleus and the part of the spherical component in the ring-like patchy 
pattern of globules is equal to 10 l° Mo and the mean radius of a patchy pattern is 
8 kpc. In models a) and b) m0 is equal to 100 in relative units, the density of the 
spherical component p is equal to 1000 and the positions of the bodies with masses 
mi = 1, 2, 3, 4, 5, 30 are marked with the numbers i = 1, 2, 3, 4, 5, 6. In models c) 

2 2 and d) the potential function of the spherical component is U(r) = C l n ( l +  r /a  ), 
with C and a constants. Close to the position of each globule its mass is written 
(the unit of mass is l0 T MO). Case e) is an example of a many-tiered model 
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E v o l u t i o n  o f  C l u s t e r s  o f  G a l a x i e s  
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A b s t r a c t .  We investigated the evolution of clusters of galaxies using direct 
N-body simulations in which each galaxy is modeled by many particles. We 
found that  the galaxies in the inner region of cluster lose their mass more 
rapidly than do those in the outer region. Therefore the galaxies in the inner 
region become smaller than those in the outer region. Significant fraction 
of the total mass of the cluster escapes from galaxies into the intracluster 
space. They form diffuse halo around the center of cluster. We also found that 
the mass (m) and the velocity dispersion (cr) satisfy the relation, m oc c~ 4. 
This tendency is consistent with the Faber-Jackson relation, which L oc c~ 4. 
This implies that the Faber-Jackson relation is result of the evolution of the 
galaxies driven by interactions with other galaxies and the tidal field of the 
parent cluster. 

1. I n t r o d u c t i o n  

The interaction between galaxies is highly inelastic. Through encounters, the 
energy of orbital motion is converted to the random energy of stars within 
galaxies. As a result, each galaxy loses its mass and changes its structure. 

The rates of change of mass and energy strongly depend on the structure 
of each galaxy, while the structure of each galaxy changes through the change 
of mass and energy. It is, therefore, necessary to perform self-consistent sim- 
ulation in which each galaxy is modeled as an N-body system. 

We performed a series of N-body simulations to investigate the evolu- 
tion of clusters of galaxies. More detailed description of our result is given 
in Funato et al. (1993). In our work, each galaxy is represented by many 
particles and we calculate direct summation of forces to each particle. Thus, 
our result is not affected by any ambiguity in the assumptions on the nature 
of the interaction between galaxies. We used GRAPE-3; a special-purpose 
computer for gravitational N-body problem (Okumura et al. 1993) for the 
time integration. 
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Fig. 1. Snapshot of the initial con- 
dition projected onto the z-y plane 
(Funato et al. 1993) 

o 

- 3 0  - 2 0  - ~ n  
I i 

Fig. 2. Right: Snapshots of the clus- 
ter at t = 200 projected onto the x-y 
plane (Funato et al. 1993) 

We found 1) galaxies in the inner region lose their mass more rapidly than 
do those in the outer region. Therefore, galaxies in the inner region become 
smaller than  those in the outer region. 2) A large fraction of total  mass of the 
cluster escapes from galaxies into the intracluster space to form diffuse halo 
around the center of the cluster. 3) Between the mass of each galaxy (m) and 
velocity dispersion of particles within the galaxy (or), the relation known as 
Faber-Jackson relation -or c< m 1/",  n _ 4-  (Faber & Jackson 1976), develops 
as the cluster evolves. 
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2 .  C l u s t e r  M o d e l s  

Each galaxy is represented by a Plummer model with 512 equal mass par- 
ticles. The cluster comprised 128 equal galaxies. Figure 1 shows an initial 
cluster model. The entire cluster is represented by that  of a Plummet  model 
in the dynamical equilibrium. We used a standard units where G = 1, m = 1, 
and e = -0 .25  (Heggie & Mathieu 1986). The crossing times of a galaxy and 
the cluster are 2.8 and 22.3, respectively. The velocity dispersion of the cluster 
is three times larger than that  of a galaxy. 

3. R e s u l t s  

Figure 2 is a snapshot at t = 200. There is a diffuse halo around the center 
of the cluster made of escapers and there is one massive galaxy. Here we call 
particles which escaped from its parent galaxy as escapers. Half of total mass 
of the cluster has escaped from galaxies. 
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Fig. 3. Masses of the galaxies plotted against the depth of the cluster potential. 
Filled squares correspond to merger remnants (Funato et al. 1993) 

Figure 3 shows the relation between masses of galaxies and the depth of 
the cluster potential at their positions. It is clear that  galaxies in the bot tom 
of the potential well (center of the cluster) are less massive than those in the 
outer region, at though several massive galaxies are fornled through mergings. 
This tendency is explained by the fact that encounters are more frequent in 
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Fig. 4. Masses of galax- 
ies plotted against their 
velocity dispersions. 
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the central region. This correlation is in good agreement with observation of 
Coma cluster by StrSm & StrSm (1978). 

Figure 4 shows that galaxies in a cluster evolve so as to satisfy the Faber- 
Jackson relation. This implies that the Faber-Jackson relation is result of the 
interactions between galaxies. 
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Abs t rac t .  We investigated the smoothing of the cosmic background radi- 
ation (CBR) through gravitational scatterings. The CBR is gravitationally 
scattered by galaxies, clusters of galaxies, and superclusters during the travel 
from the last scattering surface. Although the effect of the gravitational scat- 
terings was thought to be unimportant, we found that the scatterings by 
superclusters reduce the anisotropy by a large factor. This result is explained 
by the fact that the distance between two light rays increases exponentially 
through multiple scatterings. This exponential growth occurs if the distance 
is smaller than the critical distance determined by the number density of the 
scattering objects. We found that the gravitational scatterings by superclus- 
ters can reduce the temperature anisotropy of the CBR at present time by a 
large factor, in angular scales up to a few degrees. 

1. I n t r o d u c t i o n  

The exponential instability of the orbit in N-body systems has been well 
known in the community of the stellar dynamics (Miller 1964; Goodman et 
al. 1993 and references therein). Because of the exponential instability, two 
N-body systems with slightly different initial conditions depart from each 
other exponentially in time. 

The basic mechanism of this exponential instability is very simple. Con- 
sider the orbit of two test particles in the fixed distribution of point masses. 
When the test particles are scattered by a point mass, the distance between 
two particles is amplified because the orbit of the particle closer to the scat- 
terer is deflected by a larger angle. When they are scattered at the next time, 
the distance is again amplified. Since the scattering angle is proportional to 
the impact parameter, the difference in the scattering angle is also propor- 
tional to the distance between two orbits. Therefore the distance between 
two orbits grows exponentially in time as long as the scattering is coherent. 
Figure 1 illustrates consecutive scatterings. 
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Fig. 1. Exponential divergence of two nearby orbits 
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Fig. 2. The trajectories of photons from the last scattering surface to an observer 

According to Goodman et al. (1993), the e-folding time of this exponential 
instability is of the order of 0.1 crossing time, and the exponential growth 
would saturate when the distance between two orbits becomes RN -1/2, where 
R is the characteristic radius of the system and N is the number of particles 
in the system. 

In this paper, we discuss the effect of this exponential instability on the 
orbits of photons, in particular, the observed temperature anisotropy of the 
cosmic background radiation (CBR). Figure 2 illustrates the observation of 
the CBR through scattering objects. The observer is at the right hand side 
of the figure and see two rays. If photons traveled following straight lines, 
their orbits would be the straight lines (short-dashed lines). However, actual 
orbits are deflected by objects such as galaxies and clusters, as shown in the 
solid curves. As a result, the actual beam width, shown in the long-dashed 
lines, is larger than the beam width at the position of the observer. 

The possibility that  the gravitational scatterings change the anisotropy of 
CBR has been discussed by many authors (e.g. Blanchard & Schneider 1987; 
Cole K: Efstathiou 1989; Sasaki 1989; Tomita & Watanabe 1989). However, 
most authors assumed that  the effect of the multiple scatterings could be 
expressed as the superposition of single scatterings. Thus their estimates did 
not take into account the exponential instability. In the following, I briefly 
describe the effect of the exponential instability on the anisotropy of CBR 
due to gravitational scatterings. A more detailed discussion is presented by 
Fukushige et al. (1993) 
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2.  Theory 

In the following, we consider how the distance between two rays emitted from 
the observer (see Fig. 2) changes when we calculate the trajectories backward 
in time. For simplicity, we assume that  the universe is flat (Y2 = 1). 

Goodman et al. (1993) gave an intuitive explanation for the mechanism 
of the exponential growth. If we consider the encounters with the impact 
parameter  p, the average time interval of such encounters is given by 

r "~ n - l p - 2 c  -1  , (1) 

where n is the number density of the scattering objects and c is the light 
velocity. The change of the distance d between two neighboring photons is 
given by 

= 0 r .  (2)  

Here, 0 is the difference of the directions of two photons generated by an 
encounter and is approximately expressed as 0 --~ G m d p - 2 c ,  where m is 
the mass of the scattering objects. Note that whether the distance increases 
or not depends on the angle between the impact parameter vector and the 
relative position vector of two photons. In order for the distance to grow 
exponentially, Ad must be comparable to or larger than d, since if Ad << d, 
the effects of encounters with different angles tend to cancel each other to 
give only the random walk effect on the distance. The condition A d  ~_ d gives 

(3) 

The impact parameter  corresponding to Aid "~ d is 

Pcrlt '~ ( G r n ) l l 4 n - l l 4 c - l l 2 .  (4) 

For a flat universe with radius R, this value corresponds to 

P c r i t  -~- R N  -112 , (5) 

where N is the total number of the scattering objects in the universe. As 
shown in Eq. (3), the time-scale of the growth is of the order of the free fall 
time, irrespective of the mass of the scattering objects. 

Fukushige et al. (1993) performed a series of numerical simulations of the 
orbits of two photons which are initially in small distance. They found that 
the e-folding t ime of the distance between the trajectory of two photons is 
given by 

r = 0.22/v/-G-p, (6) 

where G is the gravitational constant and p is the mass density of the scat- 
tering objects. They confirmed that  the time-scale is given by Eq. (6) and 
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does not depends on the mass of scattering objects, if the mass density is 
kept constant. 

The width w of the beam with angle 80 at z = 0 is given by 

d w l d t  = -c (8o  + wl - ) , wlz=o -- 0,  (7) 

where t is the time and c is the light velocity. By solving Eq. (7), we obtain 

8 = w/c t  = 0.49 80 [(1 + z) 1"6 - (1 + z) -3/2] / [1 - (1 -F Z) -3/2] (S) 

for the effective beam angle. Figure 3 shows 8/8o as a function of z. If scat- 
tering objects such as galaxies and superclusters are formed at, say, z = 4, 
the effective beam angle to observe anything in the region z > 4 is larger 
than the beam angle at observer by a factor of 7. The actual effect on the 
measured anisotropy depends on the power spectrum of the anisotropy, but 
is likely to be significant. 

The exponential growth does not occur if the universe is completely uni- 
form. The scattering objects must be compact enough to be effective. As 
discussed in Sect. 2, encounters with the impact parameter larger than Pcrit 
do not lead to the exponential growth. Thus, if the typical size of the scat- 
tering objects is larger than Pcrit~ the exponential growth cannot occur. In 
addition, the exponential growth of the distance between two rays saturates 
around w --~ Pcrit- This behavior is consistent with the result of Goodman 
et al. (1993). We found that galaxies are effective up to few arcseconds and 
superclusters are effective up to a few degrees. 
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Abs t rac t .  The various available scenarios for the galaxy origin predict dif- 
ferent types of galactic angular momenta distributions within galactic su- 
perclusters. The random distribution of galaxy rotation axes is expected to 
occur within the hierarchical clustering picture (Dekel 1985), whereas some 
alignment is expected to arise in the fragmentation scenario. Within the lat- 
ter model the perpendicular to the supercluster main plane orientation of 
galactic rotation axes conforms to the predictions of the turbulence model 
(Efstathiou & Silk 1983), while the alignment of galactic axes with that plane 
supports rather the adiabatic galaxy origin model (Shandarln 1974). The re- 
cently proposed "hedgehog model" predicts that the the galaxy planes should 
tend to be oriented perpendicular to direction oriented toward the superclus- 
ter centre. Most of the papers published to date analyze tile Local Superclus- 
ter (e.g. Hawley & Peebles 1975; Kapranidis ~¢ Sullivan 1983; MacGillivray 
&: Dood 1985) to conclude that galactic rotation axes are oriented in a ran- 
dom manner or, when some aligmnent was found, the rotation axes were 
preferably oriented perpendicularly to the supergalactic plane. In those pa- 
pers however, the samples considered were selected according to magnitude 
limits so they could be contaminated by background objects. Moreover, using 
the equatorial coordinate system made the discussion of results very difficult. 
In this paper a method originally proposed by Jaaniste & Saar (1977) for in- 
vestigating galactic angular momentum in the Local Supercluster (LSC) is 
applied to a sample of 2227 galaxies chosen according radial velocities from 
the UGC and ESO catalogues. We (Flin & Godlowski 1986; Godlowski 1993) 
introduced the important modifications and corrected for its inconsistencies 
and use sophisticated statistical method which had not been used in solv- 
ing this problem before using supergalactic coordinate system. The method 
takes into account both the galactic image position angle and the inclination 
of the normal to the galaxy to the line-of sight. Another independent sample 
of galaxies taken from Tully's Nearby Galaxy Catalogue is also used. In the 
present paper, we find the distribution of galactic planes throughout LSC 
anisotropic. The planes tend to be oriented perpendicular to the Local Su- 
percluster plane. The projection of galactic rotation axes on the LSC plane 
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shows a tendency to point toward the Virgo Cluster centre. Differences be- 
tween spiral and non-spiral galaxies are observed, with a weaker alignment 
for spirals. When we check our computation using independent sample taken 
from Tully's catalogue we obtain very similar results. Our results support the 
so called "pancake" galaxy formation scenario, but the "hedgehog model" is 
not excluded either because of differences distribution of edge-on galaxies. 
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8. Concluding Remarks 





10 P r o b l e m s  the  So lut ions  of  W h i c h  Can 
Serious ly  Inf luence  Stel lar D y n a m i c s  

V.G. GURZADYAN 

1. T h e o r y  

P rob l em I .  The creation of a mathematical model of N-body gravitating 
system, enabling to either avoid compactness, measure and other difficulties 
or to define statistical properties (mixing, etc.) without use of those condi- 
tions. A more concrete aim could be formulated as follows: 

Let ( X ,  B( X) ,  #, f )  be a smooth dynamical system with continuous or discrete 
time, where X is not compact and/or p(x) = c~. 

The problem is to define: 

a. the property of mixing; 
b. correlation functions. 

P rob l em 2. The study of behavior of time correlation functions for physical 
phase functions (kinetic energy, etc.). The strict formulation reads: 

Consider a dynamical system when Vgl,g 2 E L2(X) ~Cgl,g 2 > 0 and 
/391,g2 > 0 such that Vt > 0 one has 

f o r t  E R o f t  E Z. 

The problem then comes to: 

a .  

b. 

finding out conditions which the dynamical system with such properties 
should fulfill; 
an estimation of/3. 

P rob l em 3. The derivation of physical conditions to describe the core col- 
lapse, the evaporation and other evolutionary effects of N-body systems. 

P r o b l e m  4. The study of the role of stochasticity and regularity of motion 
in determining the morphology of galaxies. 
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2. C o m p u t e r  S i m u l a t i o n s  

P r ob l em 5. The building of a computer code to describe the N-body system 
with a phase trajectory close to that of the physical one for long enough time 
scales; the same for systems with non-point particles. 

Let x(t) be an exact solution of the N-body problem, xc(t) the one calculated 
by computer and by means of particular method, and 

co(T) = sup LIx (t)-x(t)ll. 
te[0,T] 

The problem is to: 

a. evaluate ¢c(T); 
b. study the limit 

C. 

lncc(T) 
¢c-~ l i m s u p - -  

~---+ OO T 

and its relation to Lyapunov characteristic exponents; 
find out methods for which ¢c = 0. 

P r o b l e m  6. The development of effective methods for numerical study of 
the statistical properties of N-body systems, particularly for the local (in 
time) characteristics of the instability. 

P r o b l e m  7. The search of computer algebraic methods for the study of the 
evolution of gravitating systems, in order to avoid the numerical integration 
of differential equations (iterations). 

3.  O b s e r v a t i o n s  

P r o b l e m  8. The analysis of high accuracy data on central regions of galax- 
ies and star clusters, in order to find out the dependence on radius of the 
number density of stars, velocity dispersion, the eccentricity of system, etc., 
and hidden relations between them. 

P r ob l em 9.  The formulation of quantitative empirical relations determining 
the position of the stellar system on the path of evolution. 

P r ob l em 10. The search of empirical relations enabling to distinguish the 
role in relaxation driving effects of two-body and N-body gravitational in- 
teractions of stars in galaxies and star clusters. 



C o m m e n t s  on "10 K e y  Prob lems"  

R i c h a r d  H.  M I L L E R  
1. G e n e r a l  R e m a r k s  

Exponential separation of most (initially) neighboring trajectories in phase 
space is generally accepted in this audience, and coping with it is generally 
regarded as important in our understanding of stellar systems. However, we 
seem on several occasions to have become obsessed with the details at the 
expense of the broader picture. 

The goal of studies in stellar dynamics is to understand the dynamics 
of real stellar systems--galaxies or star clusters. Logical connections in our 
understanding and interpretations of the dynamics of galaxies are shown in 
Fig. 1. 

REAL I 
GALAXIES J 

1 
// OBSERVEO [ 

GALAXIES 
- / " \ ~  

I ANALYTICI_ :-! NUMERICAL I THEORY I" I EXPERIMENTS j F i g .  1 
Logical Connections 

Real galaxies are the physical systems of interest; what little we know about 
them comes from observation, which rarely tells us about the physical prop- 
erties in any direct way. Observations are interpreted both through analytic 
theory and numerical experiments, and we hope that observers, analytic the- 
oreticians, and numerical experimenters talk to each other. 

The crucial question for this conference is how trajectory separation af- 
fects our understanding of the physics of galaxies (or of star clusters). Does 
trajectory separation compromise our treatments by analytic theory? By nu- 
merical experiments? These questions do not seem to have been clarified at 
this workshop. 

Numerical experiments are compromised only if the numerical trajecto- 
ries differ in some important way from "physical trajectories". The difference 
is important only if numerical trajectories visit parts of the phase space dif- 
ferently from physical trajectories. That  would imply some integrals present 
in one system but not in the other. It seems unlikely, but how do we address 
this problem? 
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A purely numerical approach, such as shadowing, won't help because all 
trajectories being compared in shadowing are computed trajectories. We can 
only say how well computed trajectories compare; but if computed trajecto- 
ries visit different parts of the phase space differently from physical trajec- 
tories, neither the original nor the shadow trajectory can explore the phase 
space freely. Both are subject to the same restrictions. 

2. C o m m e n t  o n  G u r z a d y a n ' s  P r o b l e m  2 

Autocorrelations of some state functions are known not to decay exponen- 
tially with t ime in stellar dynamical systems. The question is not trivial, but 
the result has been known for some time. This problem was studied many 
years ago by Chandrasekhar as he was trying to develop a "statistical stellar 
dynamics." He envisioned the development of a stellar system as a kind of 
Brownian motion, in which the transition from the state of the system at 
t ime t to that  at t + dt is a Markov process with some by a transition ma- 
trix. Markov processes lead to exponential decays in the autocorrelations of 
descriptive functions. Chandrasekhar arrived at the startling conclusion that  
the autocorrelation in the force acting at one point within a stellar system 
decayed as l / t ,  rather than as exp( - f l t ) ,  as would be expected for a Markov 
process. The arguments are developed in a remarkable set of papers with von 
Neumann (Chandrasekhar & yon Neumann 1942, 1943) followed by a couple 
by Chandrasekhar alone (Chandrasekhar 1944a, 1944b). The 1/t  result is in 
(1944b). The conclusion was reconfirmed a few years ago by Ed Lee (Lee 
1968), using more modern language. 

Chandrasekhar's result is stronger than the demonstration that the grav- 
itational N-body  system is not an Anosov C-system that I mentioned earlier 
at this conference. My result says that  the phase space does not have a simple 
geometric structure in which the number of expanding and contracting dimen- 
sions is constant throughout the space, which is quite a strong requirement. 
Chandrasekhar, on the other hand, demonstrated that  the time dependence 
of the autocorrelation in the force acting at a given point is not exponential. 
His demonstrat ion imposes less demanding requirements on the phase space. 

3. F i n i t e  N u m b e r s  o f  P a r t i c l e s  

The fact that  numerical experiments handle a finite number of particles has 
been mentioned somewhat apologetically. One should not apologize. Real gal- 
axies and real star clusters have a finite number of particles. A limited number 
of particles actually makes numerical studies a more faithful representation 
of real galaxies than are analytic Vlasov models with an infinite number of 
particles. 

With modes, where we expect O(n) modes, numerical experiments may 
have half a million modes, while Vlasov models have an infinite number. 
Neither matches a real galaxy correctly, but we can hope that  the low-order 
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modes will be similar between the two cases. This hope has been borne out in 
all cases where comparisons could be made, a result which gives confidence 
that  both  numerical experiments and analytic theory report those low-order 
modes correctly. 

Chandrasekhar S., 1944a, ApJ 99, 25 
Chandrasekhar S., 1944b, ApJ 99, 47 
Chandrasekhar S., yon Neumann J., 1942, ApJ 95, 489 
Chandrasekhar S., yon Neumann J., 1943, ApJ 97, 1 
Lee, E. P., 1968, ApJ 151, 687 

Avram HAYLI 

My general feeling is that  the very nature of the N-body  problem will prevent 
from drawing precise previsions over the long term. Of course certain well be- 
haved maps  exhibit shadowing property, in the sense that  near a numerically 
computed orbit  in the phase space there exists a true orbit of different, yet 
unknown, initial condition than the one intended. But as we are looking for 
a precise description, I wonder if such a result may have any practical inter- 
est. Anyway the building of a computer  code to describe the N-body  system 
with a phase trajectory close to that  of the theoretical one for arbitrari ly long 
t ime scales will fail because of the repeated close encounters of three or more 
particles. Finding out a method to control ec on the long term and finally 
ask ec to be 0 seems in my opinion an impossible hope. 

Louis M A R T I N E T  

It  seems to me that  my  paper  "On the Permissible Percentage of Chaotic 
Orbits in Various Morphological Types of Galaxies" brings some elements of 
answer to problem 4. However, a key approach towards a general solution 
could consist to translate the original behaviour into terms of behaviour of 
geodesics on a surface with a metric defined by means of the potential  of 
the system considered. Practically nothing exists in the literature in this 
f rame of mind concerning applications to galaxies. In fact the realistic galactic 
potentials are not easily tractable in this context. However, we plan to deal 
with some simple cases in the near future. 

Yakov P E S I N  (Pennsylvania  State  U n i v e r s i t y )  

As for problems 1 and 2, I hope to get some results about  the decay of 
correlations for general systems with non-zero Lyapunov exponents. There is 
also tha t  one can say about  infinite measure case. I am now much interested 
in a couple of things including fractal geometry and fractal dimension and 
spat ia l - temporal  chaos. I have done something interesting and there is a great 
hope to get some strong results (but for the dissipative case so far) about  
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how one can obtain information on a dynamical system by looking at the 
lattice model one has while working with a computer. Another problem is 
to construct the gravitation theory (or something like that) on a fractal set 
(and I suppose that  the Universe has a fractal structure). I have some tiny 
idea about  that.  

J u a n  Car los  M U Z Z I O  

Concerning problems 5 and 6, on numerical codes for N-body systems, let 
us first distinguish two very different cases: a) Systems where the relaxation 
time is comparable to their age (e.g., open and globular clusters); b) Systems 
where the relaxation time is much larger than their age (e.g., galaxies). In 
the first ease, the star-star interactions must be taken into account, so that  
each star in the system is represented with one body in the simulation and 
purely Newtonian forces are used; close encounters may demand the use of 
regularization techniques and, alternatively, the effect of distant masses can 
be averaged (as in tree codes). This problem is physically unstable: very small 
departures from a given initial condition will result in large departures from 
the final condition for the real system, if the evolution is followed for a long 
enough time; therefore, to build a stable code in this case is impossible, and 
we can only hope that  macroscopic properties (say, half-mass radii, number 
of escapees, and so on) be preserved, even though microscopic properties 
(individual positions and velocities) are not. In case b), instead, each body 
in the simulation represents millions of stars in reality and, correspondingly, 
the individual masses and the interparticle distances are very different in the 
stellar system and in the simulation. Besides, in order to get reasonably small 
relaxation effects in the simulation, one has to resort to codes that compute 
the potential through expansion in suitable basis functions, or to direct sum- 
mation codes with softened force laws and rather large softening parameters. 
It would be desirable to obtain in the simulation trajectories similar to those 
of stars in the equivalent general smooth constant potential but, again, that 
seems an impossible task: the very fact that  the relaxation effects can be 
reduced, but  not eliminated, shows that the energies of the individual parti- 
cles are not conserved, as required by motion in such a potential. Thus, we 
can only hope for an accurate description of macroscopic properties in this 
case too. In the particular case of problem 6, I believe that the new pertur- 
bation particle methods offer great promise because, using particles only for 
the perturbation,  they greatly reduce the relaxation effects that arise from 
the necessarily finite number of particles that  enter in the simulations. 

The increase in quanti ty and quality of observational data  (problem 8) 
poses an interesting challenge to theoreticians. Most, perhaps all, of us agree 
nowadays with the idea, pioneered by K.R. Popper, that  no scientific theory 
can be proved to be right, it can only be proved to be wrong: no matter  how 
many observations corroborate the theory, if a new observation contradicts it, 
we must change the theory (or show that  the new observation was wrong!). 
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Therefore, it is the duty of observers to find facts that  could lead to the 
rejection of current theories, rather than to their corroboration, and no theo- 
retician should feel bad about  this. Alternatively, theoreticians should make 
predictions tha t  could help the observers to disprove their theories and, in 
that  way, aid themselves to build bet ter  theories. I think that  it is not so im- 
por tant  for a theory to be true (in the long run, all may be proved false), as it 
is for it to be fruitful: even if a theory turns out to be wrong, if in the process 
it suggested new observations that  led to bet ter  theories, then it should be 
regarded as a very useful theory indeed. I believe that  it is extremely impor- 
tant  for theory and observation to march at a similar pace. If  one advances 
much farther than the other, sooner or later the former will have to wait 
for the latter to come closer. One of my dearest Professors, the late "Don 
Miguel" Itzigsohn, used to remark that ,  while it is commonplace to note that  
Kepler would not have found his laws without the exquisitely precise (for 
their t ime) observations of Tycho Brahe, it is equally true that,  had Tycho's  
observations been even more precise, Kepler could not have found his laws 
either, because it would have then been obvious that  the planetary orbits are 
not exactly ellipses. The new observational material  is already here, waiting 
to be used to devise more refined theories: the t ime is now, the theoreticians 
are us; otherwise, future technical advances will yield even better  and more 
abundant  observations that  will be ever more difficult to accommodate  within 
the present theoretical framework. 

Shogo I N A G A K I  

I t  is sometimes too difficult to study the chaotic properties of real N-body  
systems because the force diverges at zero distance and the phase space ex- 
tends to infinity. Therefore I would suggest to study simpler models such as I 
suggested in the workshop before studying real N-body  systems. Though my 
model has some similar properties as real N-body  systems, it has finite forces 
at  all distances and the configuration space is compact  and one-dimensional. 
Therefore it should be much easier to deal with. 

It  is also impor tan t  to clarify the meaning of Gurzadyan-Savvidy time- 
scale. 

Daniel  P F E N N I G E R  

My comments  are related to Problem 4. 
The problem that  should be examined in any theories is to determine its 

fragile points. Often this task may  take a long time, because a new theory 
is first tested against the simplest cases. Next more subtle aspects can be 
discovered and investigated. 

Concerning the N-body  model with respect to stellar systems, in the last 
decades one "subtle" point has become clear: chaos makes models fragile to 
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perturbations.  As consequence such questions should be asked: what is the 
scope of applicability of Liouville's theorem in chaotic stellar systems, when 
each t rajectory or the global system is sensitive to perturbations from the 
rest of the Universe? 

In an earlier work with Colin Norman (1990, ApJ 363,391) I was surprised 
to see how chaotic orbits are also responsive to dissipative perturbations. 
"Weak dissipative effects are  amplified by chaos. Most stellar systems do have a 
weak degree of dissipation and are strongly chaotic. Could a weak dissipation 
determines the long term state of stellar systems? In gas rich systems like 
spiral galaxies this is likely, but  ellipticals contain also several percent of gas. 
Other secular dissipative effects are related to the mass loss from stars; clearly 
the mass lost in a stellar populat ion after a few Gyr  is not negligible. 

Therefore, I doubt  that  "phase space volume conservation" arguments can 
really be applied to processes like galaxy formation by collapses or mergers 
of galaxies. 

George S. DJORGOVSKI 

I wonder if we are ready for the 10 key questions, be it these or some others. 
This meeting has been a success - if for no other reason, then as a very 
interesting experiment in the sociology of science - but we still have a long 
way to go! Among the mathematicians ,  numerical simulators, and observers, 
we barely even have a common language, or maybe  even the common goals. 
Still, we have seen lots of mutual  good will to learn from each other, and to 
understand each other. I guess we need more meetings to do our compulsory 
relaxation and strong mixing, and I don ' t  mean only the drinks. 

Let us cast the scene as a three-body interaction between the mathemat-  
ical ergodic theory, numerical simulations (disturbingly few of which at this 
conference actually dealt with modeling of stellar systems!), and observa- 
tions. These three things are not isomorphic, and the best they can hope is 
to make the life more interesting for each other, and maybe find some real- 
world manifestat ions which can be understood or plausibly explained by the 
theory. There are possible pitfalls all around. Mathematicians can get enam- 
ored by cleverness for its own sake, which does little good to anyone else, 
and it sure will not bring them any appreciation from the philistine masses 
of observers and suchlike lumpenproletar iat .  Similarly, numerical simulators 
can easily get lost in their fancy video games, and I have seen many  tools in 
search of the problems, and most  problems don' t  fit the tools. Finally, it is 
all too common for observers to wallow in a gross empiricism, or to pursue 
botanical  as t ronomy as a hobby. 

Well, speaking from my cultural bias, I think that  there are some excel- 
lent problems out there, which could profit from the talents and expertise 
of black-belt dynamicists.  Observations of real-life stellar systems pose some 
fascinating challenges, and I tried to point out a few of them in my written 
contribution to this volume. I ' d  rather see a real problem tackled, no mat te r  
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how fuzzy, no mat te r  how simply, than an unrealistic (and I 'd  say, usually 
sterile) toy problem. The real universe is far more interesting to some of 
us, than  any logical construct involving grids of perfect balls and springs or 
similar contraptions operating without a benefit of friction, external pertur- 
bations, and similar annoyances which only exist in the real world. . .  I think 
tha t  there is a real payoff for an adventuresome dynamieist  who manages 
to solve a problem posed by the real world, both in terms of an intellectual 
satisfaction, and a professional recognition. 

But remember:  there is no such thing as an isolated or a dissipationless 
stellar system out there. The universe is a chaotic mess, maybe  even mathe-  
mat ical ly  so. 
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